ABSTRACT
A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.
Subject(s)
Cell Size , RNA Polymerase II , Transcription, Genetic , Feedback , RNA Polymerase II/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.
Subject(s)
Carcinoma, Pancreatic Ductal/prevention & control , Cell Transformation, Neoplastic/metabolism , Pancreas/metabolism , Pancreatic Neoplasms/prevention & control , Prostaglandin D2/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Ceruletide , Disease Models, Animal , Energy Metabolism , Fibrosis , Humans , Interleukins/genetics , Interleukins/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Mice, Transgenic , Mutation , Octamer Transcription Factors/genetics , Octamer Transcription Factors/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/metabolism , Pancreatitis/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Eales' Disease is an idiopathic peripheral retinal vasculopathy first described by British ophthalmologist Henry Eales in 1880. Most prevalent in healthy young males, Eales' Disease often presents with symptoms of sudden blurry or decreased vision and floaters. Although no clear, standardized stage of the disease exists, it progresses through three overlapping phases-peripheral periphlebitis, ischemic capillary ischemia, and retinal neovascularization. The etiology of Eales' Disease is unknown and appears to be multifactorial, but post-TB hypersensitivity to tuberculoprotein and M. tuberculosis DNA is the most potential cause in the etiology of Eales' Disease. With a thorough examination of the clinical presentation and diagnosis of Eales' Disease-incorporating the latest clinical findings related to the condition-the investigation for Eales' Disease extends to explore recent potential connections with other ocular conditions or possible cofactors, such as glaucoma, uncontrolled diabetes, drug abuse, or inherited medical conditions. Moreover, focusing on critical insights into the treatment of Eales' Disease across its various stages of progression, the overarching goal of the paper is to refine and suggest possible future diagnostic and therapeutic strategies. Widening our understanding of pathophysiology and utilizing various treatment options for individual patients holds immense potential for advancing ocular medicine and optimizing patient care for people with this disease with unknown pathophysiology.
ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely dense fibrotic stroma, which contributes to tumor growth, metastasis, and drug resistance. During tumorigenesis, quiescent pancreatic stellate cells (PSCs) are activated and become major contributors to fibrosis, by increasing growth factor signaling and extracellular matrix deposition. The p53 tumor suppressor is known to restrict tumor initiation and progression through cell autonomous mechanisms including apoptosis, cell cycle arrest, and senescence. There is growing evidence that stromal p53 also exerts anti-tumor activity by paracrine mechanisms, though a role for stromal p53 in PDAC has not yet been described. Here, we demonstrate that activation of stromal p53 exerts anti-tumor effects in PDAC. We show that primary cancer-associated PSCs (caPSCs) isolated from human PDAC express wild-type p53, which can be activated by the Mdm2 antagonist Nutlin-3a. Our work reveals that p53 acts as a major regulator of PSC activation and as a modulator of PDAC fibrosis. In vitro, p53 activation by Nutlin-3a induces profound transcriptional changes, which reprogram activated PSCs to quiescence. Using immunofluorescence and lipidomics, we have also found that p53 activation induces lipid droplet accumulation in both normal and tumor-associated fibroblasts, revealing a previously undescribed role for p53 in lipid storage. In vivo, treatment of tumor-bearing mice with the clinical form of Nutlin-3a induces stromal p53 activation, reverses caPSCs activation, and decreases fibrosis. All together our work uncovers new functions for stromal p53 in PDAC.