Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Respir Res ; 24(1): 32, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698141

ABSTRACT

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.


Subject(s)
Asthma , Pyroglyphidae , Animals , Humans , Transcriptome , Lung/metabolism , Collagen/metabolism , Transcription Factors/metabolism , Disease Models, Animal
2.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Article in English | MEDLINE | ID: mdl-35643377

ABSTRACT

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Subject(s)
Asthma , Eosinophilia , Pulmonary Disease, Chronic Obstructive , Respiratory Hypersensitivity , Animals , Female , Mice , RNA , Transcription Factors , Transcriptome
3.
Immunol Cell Biol ; 100(4): 235-249, 2022 04.
Article in English | MEDLINE | ID: mdl-35175629

ABSTRACT

Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) and absent in melanoma-2 (AIM2) inflammasomes in cigarette smoke-induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2-/- mice in cigarette smoke-induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2-/- mice had increased airway neutrophils with decreased caspase-1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti-Ly6G in experimental COPD in wild-type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti-Ly6G treatment in Aim2-/- mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase-1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti-Ly6G-mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase-1 in neutrophils.


Subject(s)
Cigarette Smoking , Neutrophils , Animals , Caspase 1 , Cigarette Smoking/adverse effects , DNA-Binding Proteins , Mice , Mice, Inbred C57BL , Neutrophil Infiltration
4.
Biochemistry ; 58(7): 974-986, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30585477

ABSTRACT

The heme enzyme indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the first reaction of l-tryptophan oxidation along the kynurenine pathway. IDO1 is a central immunoregulatory enzyme with important implications for inflammation, infectious disease, autoimmune disorders, and cancer. Here we demonstrate that IDO1 is a mammalian nitrite reductase capable of chemically reducing nitrite to nitric oxide (NO) under hypoxia. Ultraviolet-visible absorption and resonance Raman spectroscopy showed that incubation of dithionite-reduced, ferrous-IDO1 protein (FeII-IDO1) with nitrite under anaerobic conditions resulted in the time-dependent formation of an FeII-nitrosyl IDO1 species, which was inhibited by substrate l-tryptophan, dependent on the concentration of nitrite or IDO1, and independent of the concentration of the reductant, dithionite. The bimolecular rate constant for IDO1 nitrite reductase activity was determined as 5.4 M-1 s-1 (pH 7.4, 23 °C), which was comparable to that measured for myoglobin (3.6 M-1 s-1; pH 7.4, 23 °C), an efficient and biologically important mammalian heme-based nitrite reductase. IDO1 nitrite reductase activity was pH-dependent but differed with myoglobin in that it showed a reduced proton dependency at pH >7. Electron paramagnetic resonance studies measuring NO production showed that the conventional IDO1 dioxygenase reducing cofactors, ascorbate and methylene blue, enhanced IDO1's nitrite reductase activity and the time- and IDO1 concentration-dependent release of NO in a manner inhibited by l-tryptophan or the IDO inhibitor 1-methyl-l-tryptophan. These data identify IDO1 as an efficient mammalian nitrite reductase that is capable of generating NO under anaerobic conditions. IDO1's nitrite reductase activity may have important implications for the enzyme's biological actions when expressed within hypoxic tissues.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Nitrite Reductases/metabolism , Anaerobiosis , Electron Spin Resonance Spectroscopy , Heme/chemistry , Heme/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitrite Reductases/chemistry , Nitrites/chemistry , Nitrites/metabolism , Protons , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
5.
Eur Respir Rev ; 30(159)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33597123

ABSTRACT

Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/diagnosis , Asthma/therapy , Humans , Models, Theoretical , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy
SELECTION OF CITATIONS
SEARCH DETAIL