Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Cell Res ; 434(2): 113891, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38104645

ABSTRACT

MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.


Subject(s)
MicroRNAs , Neoplasms , Humans , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Kinase C/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neoplasms/genetics , Phosphorylation , Calmodulin-Binding Proteins/metabolism , Microfilament Proteins/metabolism
2.
Clin Microbiol Rev ; 35(3): e0001422, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35862736

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.


Subject(s)
Antibodies, Monoclonal , Antiviral Agents , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization/drug effects
3.
Semin Cancer Biol ; 80: 256-275, 2022 05.
Article in English | MEDLINE | ID: mdl-32461153

ABSTRACT

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.


Subject(s)
Catechin , Neoplasms , Apoptosis , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Cell Line, Tumor , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Prospective Studies , Reproducibility of Results
4.
Mol Biol Rep ; 50(3): 2685-2700, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36534236

ABSTRACT

BACKGROUND: Lung cancer is one of the highly lethal forms of cancer whose incidence has worldwide rapidly increased over the past few decades. About 80-85% of all lung cancer cases constitute non-small cell lung cancer (NSCLC), with adenocarcinoma, squamous cell carcinoma and large cell carcinoma as the main subtypes. Immune checkpoint inhibitors have led to significant advances in the treatment of a variety of solid tumors, significantly improving cancer patient survival rates. METHODS AND RESULTS: The cytotoxic drugs in combination with anti-PD-(L)1 antibodies is a new method that aims to reduce the activation of immunosuppressive and cancer cell prosurvival responses while also improving direct cancer cell death. The most commonly utilized immune checkpoint inhibitors for patients with non-small cell lung cancer are monoclonal antibodies (Atezolizumab, Cemiplimab, Ipilimumab, Pembrolizumab etc.) against PD-1, PD-L1, and CTLA-4. Among them, Atezolizumab (TECENTRIQ) and Cemiplimab (Libtayo) are engineered monoclonal anti programmed death ligand 1 (PD-L1) antibodies that inhibit binding of PD-L1 to PD-1 and B7.1. As a result, T-cell proliferation and cytokine synthesis are inhibited leading to restoring the immune homeostasis to fight cancer cells. CONCLUSIONS: In this review article, the path leading to the introduction of immunotherapeutic options in lung cancer treatment is described, with analyzing the benefits and shortages of the current immunotherapeutic drugs. In addition, possibilities to co-administer immunotherapeutic agents with standard cancer treatment modalities are also considered.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor , Immunotherapy/methods
5.
Environ Res ; 233: 116476, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37348632

ABSTRACT

Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.


Subject(s)
Curcumin , Neoplasms , Humans , Curcumin/therapeutic use , Curcumin/pharmacology , Folic Acid/therapeutic use , Neoplasms/drug therapy , Solubility
6.
Arch Toxicol ; 97(1): 103-120, 2023 01.
Article in English | MEDLINE | ID: mdl-36443493

ABSTRACT

ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Carcinogenesis , Oxidative Stress , Apoptosis , Cell Transformation, Neoplastic
7.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005250

ABSTRACT

Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cyclin-Dependent Kinases , Phosphorylation , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis
8.
Semin Cancer Biol ; 69: 5-23, 2021 02.
Article in English | MEDLINE | ID: mdl-31421264

ABSTRACT

Application of natural product-based nanoformulations for the treatment of different human diseases, such as cancer, is an emerging field. The conventional cancer therapeutic modalities, including surgery, chemotherapy, immunotherapy, radiotherapy has limited achievements. A larger number of drawbacks are associated with these therapies, including damage to proliferating healthy tissues, structural deformities, systemic toxicity, long-term side effects, resistance to the drug by tumor cells, and psychological problems. The advent of nanotechnology in cancer therapeutics is recent; however, it has progressed and transformed the field of cancer treatment at a rapid rate. Nanotherapeutics have promisingly overcome the limitations of conventional drug delivery system, i.e., low aqueous solubility, low bioavailability, multidrug resistance, and non-specificity. Specifically, natural product-based nanoformulations are being intentionally studied in different model systems. Where it is found that these nanoformulations has more proximity and reduced side effects. The nanoparticles can specifically target tumor cells, enhancing the specificity and efficacy of cancer therapeutic modalities which in turn improves patient response and survival. The integration of phytotherapy and nanotechnology in the clinical setting may improve pharmacological response and better clinical outcome of patients.


Subject(s)
Biological Products/therapeutic use , Drug Delivery Systems , Nanoparticles/administration & dosage , Nanotechnology/methods , Neoplasms/drug therapy , Phytotherapy/methods , Animals , Biological Availability , Humans , Nanoparticles/chemistry
9.
Semin Cancer Biol ; 73: 196-218, 2021 08.
Article in English | MEDLINE | ID: mdl-33130037

ABSTRACT

In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms/drug therapy , Silybin/pharmacology , Animals , Humans , Polyphenols/pharmacology
10.
Pharmacol Res ; 186: 106523, 2022 12.
Article in English | MEDLINE | ID: mdl-36377125

ABSTRACT

Despite advanced clinical and translational oncology research, mortality rates are still increasing worldwide. Recently, a class of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been well investigated in regulating biological, molecular, and cellular signaling pathways. This review article provided the current research progress on how miRNAs, lncRNAs, and circRNAs regulate Hedgehog (Hh) and Hippo signaling pathways in various cancers. These ncRNAs target both pathways' key downstream molecules and may be used for targeted cancer treatment. Moreover, Hh and Hippo signaling pathways crosstalked with each other through Gli1 of Hh pathways and YAP1/TEAD molecules of Hippo pathways during cancer progression. Additionally, Hh and Hippo signaling pathways regulate resistance against the chemo, radio, and immune therapies for several types of cancer via inducing GLI and YAP/TAZ proteins level. Therefore, to improve the treatment regime, we presented the role of various prominent phytochemicals such as curcumin, resveratrol, genistein, quercetin, paclitaxel, and silibinin in regulating lncRNAs, miRNAs, circRNA through Hedgehog and Hippo signaling pathways' constituents in cancers. We believe that knowledge obtained from this review may help make new drugs for cancer treatment in the future.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Circular , Hedgehog Proteins , Hippo Signaling Pathway , RNA, Untranslated/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
11.
Mol Biol Rep ; 49(9): 8987-8999, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35474053

ABSTRACT

As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Liver Neoplasms , Lung Neoplasms , Humans , Inflammation/genetics , Inflammation/metabolism , Male , Neovascularization, Pathologic/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology
12.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557950

ABSTRACT

Phloretin is a natural dihydrochalcone found in many fruits and vegetables, especially in apple tree leaves and the Manchurian apricots, exhibiting several therapeutic properties, such as antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. In this review article, the diverse aspects of the anticancer potential of phloretin are addressed, presenting its antiproliferative, proapoptotic, antimetastatic, and antiangiogenic activities in many different preclinical cancer models. The fact that phloretin is a planar lipophilic polyphenol and, thus, a membrane-disrupting Pan-Assay Interference compound (PAIN) compromises the validity of the cell-based anticancer activities. Phloretin significantly reduces membrane dipole potential and, therefore, is expected to be able to activate a number of cellular signaling pathways in a non-specific way. In this way, the effects of this minor flavonoid on Bax and Bcl-2 proteins, caspases and MMPs, cytokines, and inflammatory enzymes are all analyzed in the current review. Moreover, besides the anticancer activities exerted by phloretin alone, its co-effects with conventional anticancer drugs are also under discussion. Therefore, this review presents a thorough overview of the preclinical anticancer potential of phloretin, allowing one to take the next steps in the development of novel drug candidates and move on to clinical trials.


Subject(s)
Neoplasms , Phloretin , Humans , Phloretin/pharmacology , Phloretin/chemistry , Neoplasms/drug therapy , Cytokines , Flavonoids/therapeutic use , Caspases
13.
Molecules ; 27(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408611

ABSTRACT

The increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance. This article deals with the screening of a database of polyphenols against PTP1B activity for the identification of a potential inhibitor. The research plan had two clear objectives. Under first objective, we conducted a quantitative structure-activity relationship analysis of flavonoids with PTP1B that revealed the strongest correlation (R2 = 93.25%) between the number of aromatic bonds (naro) and inhibitory concentrations (IC50) of PTP1B. The second objective emphasized the binding potential of the selected polyphenols against the activity of PTP1B using molecular docking, molecular dynamic (MD) simulation and free energy estimation. Among all the polyphenols, silydianin, a flavonolignan, was identified as a lead compound that possesses drug-likeness properties, has a higher negative binding energy of -7.235 kcal/mol and a pKd value of 5.2. The free energy-based binding affinity (ΔG) was estimated to be -7.02 kcal/mol. MD simulation revealed the stability of interacting residues (Gly183, Arg221, Thr263 and Asp265). The results demonstrated that the identified polyphenol, silydianin, could act as a promising natural PTP1B inhibitor that can modulate the insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Polyphenols/pharmacology , Polyphenols/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Quantitative Structure-Activity Relationship , Structure-Activity Relationship
14.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558007

ABSTRACT

Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand-receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.


Subject(s)
Coordination Complexes , Tin , Molecular Docking Simulation , Flavonoids/pharmacology , Quercetin/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria
15.
Molecules ; 27(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35684419

ABSTRACT

Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 µM, 56.05 µM, and 47.12 µM, respectively. In MG-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (-151.13 kcal/mol) and CDK1 (-133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.


Subject(s)
Bone Neoplasms , Boraginaceae , Osteosarcoma , Apoptosis , Boraginaceae/metabolism , Cell Line, Tumor , Cell Proliferation , Esters , Humans , Molecular Docking Simulation , NF-kappa B/metabolism , Osteosarcoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism
16.
Pharmacol Res ; 166: 105487, 2021 04.
Article in English | MEDLINE | ID: mdl-33581287

ABSTRACT

Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinogenesis/drug effects , Neoplasms/drug therapy , Rotenone/analogs & derivatives , Signal Transduction/drug effects , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Proliferation/drug effects , Humans , Neoplasms/metabolism , Neoplasms/pathology , Rotenone/pharmacology , Rotenone/therapeutic use
17.
Int J Mol Sci ; 20(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717416

ABSTRACT

Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed.


Subject(s)
Neoplasms/drug therapy , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Clinical Studies as Topic , Drug Evaluation, Preclinical , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Tocotrienols/chemistry , Treatment Outcome
18.
Tumour Biol ; 37(10): 12915-12925, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27448303

ABSTRACT

Natural compounds have been known as biosafety agents for their significant clinical and biological activity against dreadful diseases, including cancer, cardiovascular, and neurodegenerative disorders. Gambogic acid (GA), a naturally occurring xanthone-based moiety, reported from Garcinia hanburyi tree, is known to perform numerous intracellular and extracellular actions, including programmed cell death, autophagy, cell cycle arrest, antiangiogenesis, antimetastatic, and anti-inflammatory activities. In addition, GA-based synergistic approaches have been proven to enhance the healing strength of existing chemotherapeutic agents along with lesser side effects. The present review uncovers the bio-therapeutic potential of gambogic acid along with the possible mechanistic interactions of GA with its recognized cellular targets.


Subject(s)
Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Xanthones/therapeutic use , Animals , Humans , Molecular Targeted Therapy , Neoplasms/metabolism
19.
Tumour Biol ; 37(10): 12927-12939, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27448306

ABSTRACT

In the last few decades, the scientific community has discovered an immense potential of natural compounds in the treatment of dreadful diseases such as cancer. Besides the availability of a variety of natural bioactive molecules, efficacious cancer therapy still needs to be developed. So, to design an efficacious cancer treatment strategy, it is essential to understand the interactions of natural molecules with their respective cellular targets. Quercetin (Quer) is a naturally occurring flavonol present in many commonly consumed food items. It governs numerous intracellular targets, including the proteins involved in apoptosis, cell cycle, detoxification, antioxidant replication, and angiogenesis. The weight of available synergistic studies vigorously fortifies the utilization of Quer as a chemoprevention drug. This extensive review covers various therapeutic interactions of Quer with their recognized cellular targets involved in cancer treatment.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Quercetin/pharmacology , Animals , Humans
20.
Tumour Biol ; 36(6): 4005-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25835976

ABSTRACT

In recent years, growing interest has been focused on the field of chemoprevention using natural therapies. The reason to turn toward "natural" remedies is associated with diverse beneficial pharmacological properties of natural compounds. Isothiocyanates (ITCs), the major pharmacological active constituents of cruciferous vegetables, are derived from the enzymatic hydrolysis of glucosinolates (GSLs). ITCs govern many intracellular targets including cytochrome P 450 (CYP) enzymes, proteins involved in antioxidant response, tumorigenesis, apoptosis, cell cycle, and metastasis. Investigation of the mechanisms of anti-cancer drugs has given important information regarding the use of natural chemopreventive compounds. This extensive review covers various molecular aspects of the interactions of ITCs with their recognized cellular targets involved in cancer treatment in order to enhance anti-tumor outcome with decreased toxicity to patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Chemoprevention , Isothiocyanates/therapeutic use , Neoplasms/drug therapy , Vegetables/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Antioxidants/therapeutic use , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Cycle/drug effects , Humans , Isothiocyanates/chemistry , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL