Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116528, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38820821

ABSTRACT

Effective removal of organic UV filters from aquatic environmental compartments and swimming waters is very important because these substances are hazardous to humans and wildlife at low concentrations and act as endocrine disruptors. Therefore, the aim of the present article is to determine the extraction efficiencies of hydrophobic deep eutectic solvents (HDES) for the selected UV filters based on benzophenone structure (benzophenone, 2,4-dihydroxybenzophenone, 2,2´,4,4´-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2´-dihydroxy-4-methoxybenzophenone, 4-methacryloxy-2-hydroxybenzophenone) from aqueous matrices. For this purpose, six HDESs based on dl-menthol in combination with caprylic, decanoic and lauric acid are prepared and compared with referent terpene solvents such as terpineol and linalool. The effect of various parameters such as HDES composition, volume ratio, frequency and shaking time are studied. The highest extraction efficiency is shown by HDES of menthol:caprylic acid (1:1) composition at the aqueous:organic phase volume ratio of 1:1, shaking frequency of 1500 rpm and shaking time of 15 min. The achieved extraction efficiencies are higher than 99.6 % for all benzophenones studied in the purification of stagnant pond water, swimming pool water and river water samples. After a simple and fast sample treatment, the residual levels of benzophenones in the waters are controlled by a newly developed sensitive HPLC-MS/MS method with LOQs in the range of 0.7 - 5.0 ng/mL.


Subject(s)
Benzophenones , Deep Eutectic Solvents , Hydrophobic and Hydrophilic Interactions , Sunscreening Agents , Water Pollutants, Chemical , Water Purification , Benzophenones/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Water Purification/methods , Deep Eutectic Solvents/chemistry , Menthol/chemistry , Caprylates/chemistry
2.
Electrophoresis ; 43(20): 1953-1962, 2022 10.
Article in English | MEDLINE | ID: mdl-35986681

ABSTRACT

We present a method for finely adjustable electroosmotic flow (EOF) velocity in cathodic direction for the optimization of separations in capillary electrophoresis. To this end, we use surface modification of the separation fused silica capillary by the covalently attached copolymer of acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS), that is, poly(AM-co-AMPS) or PAMAMPS. Coatings were formed by the in-capillary polymerization of a mixture of the neutral AM and anionic AMPS monomers premixed in various ratios in order to control the charge density of the copolymer. EOF mobility varies in the 0 to ∼40 × 10-9  m2 V-1 s-1 interval for PAMAMPS coatings ranging from 0 to 60 mol.% of charged AMPS monomer. For EOF in PAMAMPS-treated capillaries, we observed (i) a negligible dependence on pH in the 2-10 interval, (ii) a minor variance among background electrolytes (BGEs) in function of their components and (iii) its standard decrease with increasing ionic strength of the BGE. Interest in variable cathodic EOF was demonstrated by the amelioration of separation of two kinds of isomeric anionic analytes, that is, monosaccharides phosphates and helquat enantiomers, in counter-EOF mode.


Subject(s)
Electroosmosis , Electrophoresis, Capillary , Acrylamide , Acrylic Resins , Alkanesulfonates , Anions , Electrolytes , Electrophoresis, Capillary/methods , Monosaccharides , Phosphates , Polymers , Silicon Dioxide
3.
Electrophoresis ; 43(11): 1129-1139, 2022 06.
Article in English | MEDLINE | ID: mdl-35072285

ABSTRACT

Determination of the broad-spectrum antibiotics amoxicilline (AMX) and ceftazidime (CTZ) in blood serum and microdialysates of the subcutaneous tissue of the lower limbs is performed using CE with contactless conductivity detection (C4 D). Baseline separation of AMX is achieved in 0.5 M acetic acid as the background electrolyte and separation of CTZ in 3.2 M acetic acid with addition of 13% v/v methanol. The CE-C4 D determination is performed in a 25 µm capillary with suppression of the EOF using INST-coating on an effective length of 18 cm and the attained migration time is 4.2 min for AMX and 4.4 min for CTZ. The analysis was performed using 20 µl of serum and 15 µl of microdialysate, treated by the addition of acetonitrile in a ratio of 1/3 v/v and the sample is injected into the capillary using the large volume sample stacking technique. The LOQ attained in the microdialysate is 148 ng/ml for AMX and 339 ng/ml for CTZ, and in serum 143 ng/ml for AMX and 318 ng/ml for CTZ. The CE-C4 D method is employed for monitoring the passage of AMX and CTZ from the blood circulatory system into the subcutaneous tissue at the sites of diabetic ulceration in patients suffering from diabetic foot syndrome and also for measuring the pharmacokinetics following intravenous application of bolus antibiotic doses.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Amoxicillin , Anti-Bacterial Agents , Ceftazidime , Diabetic Foot/drug therapy , Electric Conductivity , Electrophoresis, Capillary/methods , Humans , Serum
4.
Electrophoresis ; 42(6): 749-755, 2021 03.
Article in English | MEDLINE | ID: mdl-33191565

ABSTRACT

For connecting flow-through analytical methods with capillary electrophoresis, a chip working in the air-assisted flow gating interface regime is cast from poly(dimethylsiloxane). In the injection space, the exit from the delivery capillary is placed close to the entrance to the separation capillary. Prior to injecting the sample into the separation capillary, the background electrolyte is forced out of the injection space by a stream of air. In the empty space, a drop of the sample with a volume of <100 nL is formed between the exit from the delivery capillary and the entrance into the separation capillary, from which the sample is injected hydrodynamically into the separation capillary. After injection, the injection space is filled with BGE, and the separation can be begun. Three geometric variants for the mutual geometric arrangement of the delivery and separation capillaries were tested: the delivery capillary is placed perpendicular to the separation capillary, from either above or below, or the capillaries are placed axially, that is, directly opposite one another. All of the variants are equivalent from the analytical and separation efficiency viewpoints. The repeatability expressed by RSD is up to 5%. The tested flow gating interface variants are also suitable for continuous and discontinuous sampling at flow rates of the order of units of µL/min. The developed instrument for sequential electrophoretic analysis operates fully automatically and is suitable for rapid sequential monitoring of dynamic processes.


Subject(s)
Electrophoresis, Capillary , Electrolytes
5.
Electrophoresis ; 42(19): 1885-1891, 2021 10.
Article in English | MEDLINE | ID: mdl-34228371

ABSTRACT

Branched chain amino acids (BCAAs), alanine and glutamine are determined in human plasma by capillary electrophoresis with contactless conductivity detection (CE/C4 D). The baseline separation of five amino acids from other plasma components is achieved on the short capillary effective length of 18 cm in 3.2 mol/L acetic acid with addition of 13% v/v methanol as background electrolyte. Migration times range from 2.01 min for valine to 2.84 min for glutamine, and LODs for untreated plasma are in the interval 0.7-0.9 µmol/L. Sample treatment is based on the addition of acetonitrile to only 15 µL of plasma and supernatant is directly subjected to CE/C4 D. Circulating amino acids are measured in patients with pancreatic cancer and cancer cachexia during oral glucose tolerance test. It is shown that patients with pancreatic cancer and cancer cachexia syndrome exhibit low basal circulating BCAAs and glutamine levels and loss of their insulin-dependent suppression.


Subject(s)
Amino Acids , Pancreatic Neoplasms , Amino Acids, Branched-Chain , Cachexia , Electric Conductivity , Electrophoresis, Capillary , Glutamine , Humans
6.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804011

ABSTRACT

Asymmetric and symmetric dimethylarginines are toxic non-coded amino acids. They are formed by post-translational modifications and play multifunctional roles in some human diseases. Their determination in human blood plasma is performed using capillary electrophoresis with contactless conductivity detection. The separations are performed in a capillary covered with covalently bonded PAMAPTAC polymer, which generates anionic electroosmotic flow and the separation takes place in the counter-current regime. The background electrolyte is a 750 mM aqueous solution of acetic acid with pH 2.45. The plasma samples for analysis are treated by the addition of acetonitrile and injected into the capillary in a large volume, reaching 94.5% of the total volume of the capillary, and subsequently subjected to electrophoretic stacking. The attained LODs are 16 nm for ADMA and 22 nM for SDMA. The electrophoretic resolution of both isomers has a value of 5.3. The developed method is sufficiently sensitive for the determination of plasmatic levels of ADMA and SDMA. The determination does not require derivatization and the individual steps in the electrophoretic stacking are fully automated. The determined plasmatic levels for healthy individuals vary in the range 0.36-0.62 µM for ADMA and 0.32-0.70 µM for SDMA.


Subject(s)
Arginine/analogs & derivatives , Electrophoresis, Capillary , Acetonitriles/chemistry , Anions/blood , Anions/chemistry , Anions/isolation & purification , Arginine/blood , Arginine/chemistry , Arginine/isolation & purification , Electric Conductivity , Humans , Limit of Detection
7.
Electrophoresis ; 41(18-19): 1564-1567, 2020 10.
Article in English | MEDLINE | ID: mdl-32640044

ABSTRACT

Riociguat is novel antihypertensive drug for treatment of pulmonary hypertension. As such, it is still being tested in many clinical and pharmacokinetic trials. Existing methods that determine serum riociguat and desmethylriociguat (DMR) are based solely on liquid chromatography with mass spectrometry. Therefore, we present a novel capillary electrophoresis with mass spectrometry method (CE-MS) for their determination in human serum as alternative method for ongoing trials. Complete resolution of both analytes was achieved by means of pH optimization of ammonium formate background electrolytes that are fully compatible with ESI/MS detection. Simple liquid-liquid extraction was used as sample pretreatment. The calibration dependence of the method was linear (in the range of 10-1000 ng/mL), with adequate accuracy (90.1-114.9%) and precision (13.4%). LOD and LOQ were arbitrarily set at 10 ng/mL for both analytes. Clinical applicability was validated using serum samples from patients treated with riociguat in pharmacokinetic study and the results corresponded with reference HPLC-MS/MS values. Capillary electrophoresis proved to be sensitive and selective tool for the analysis of riociguat and DMR.


Subject(s)
Electrophoresis, Capillary/methods , Pyrazoles/blood , Pyrimidines/blood , Spectrometry, Mass, Electrospray Ionization/methods , Electrolytes , Humans , Limit of Detection , Linear Models , Liquid-Liquid Extraction , Pyrazoles/chemistry , Pyrazoles/isolation & purification , Pyrazoles/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/isolation & purification , Pyrimidines/pharmacokinetics , Reproducibility of Results
8.
J Sep Sci ; 43(5): 962-969, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31833157

ABSTRACT

Beauverolides (beauveriolides) are abundant, biologically active cyclodepsipeptides produced by many entomopathogenic fungi, including those that are used as biopesticides. Beauverolides act as cholesterol acyltransferase inhibitors in humans; thus, their mode of action has been the subject of pharmacological and clinical research. The cost-effective analytical methods are needed for fast, routine laboratory analysis of beauverolides. We isolated beauverolides from the fungal strain Isaria fumosorosea PFR 97-Apopka and opened the rings of the isolated beauverolides using a pyridine alkaline medium. We separated fractions of cyclic and linearized beauverolides by thin-layer chromatography, and found the chloroform-acetate (9:1, v/v) and chloroform-acetonitrile-acetate (8:1:1, v/v/v) mobile phases, respectively, to be the most efficient. We examined all the fractions by liquid chromatography-mass spectrometry using ion trap and Orbitrap high resolution mass spectrometry. For rapid screening of the contents of cyclic, and, particularly, linearized beauverolides, we developed a novel analytical method that consisted of using capillary electrophoresis coupled with contactless conductivity detection. Furthermore, we improved the separation of the peptides by applying capillary micellar electrokinetic chromatography with the N-cyclohexyl-2-aminoethanesulfonic acid:SDS:NaOH buffer, pH 9.8 as the background electrolyte. The described novel methods allow fast and cost-effective separation of chemically related groups of beauverolides.


Subject(s)
Anticholesteremic Agents/isolation & purification , Cordyceps/chemistry , Depsipeptides/isolation & purification , Anticholesteremic Agents/chemistry , Chromatography, Liquid , Depsipeptides/chemistry , Humans , Mass Spectrometry
9.
Electrophoresis ; 40(4): 587-590, 2019 02.
Article in English | MEDLINE | ID: mdl-30443942

ABSTRACT

A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow-through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow-through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 µM mixture of the inorganic cations K+ , Ba2+ , Na+ , Mg2+ , and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7-1.0% and the values for the peak area were 0.7-1.4%; RSD were determined for ten repeated measurements.


Subject(s)
Electrophoresis, Capillary/instrumentation , Microfluidic Analytical Techniques/instrumentation , Air , Equipment Design , Microdialysis , Reproducibility of Results
10.
J Sep Sci ; 42(11): 2062-2068, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30938060

ABSTRACT

A method of capillary electrophoresis with contactless conductivity detection has been developed for non-enantioselective monitoring the anaesthetic ketamine and its main metabolite norketamine. The separation is performed in a 15 µm capillary with an overall length of 31.5 cm and length to detector of 18 cm; inner surface of the capillary is covered with a commercial coating solution to reduce the electroosmotic flow. In an optimised background electrolyte with composition 2 M acetic acid + 1% v/v coating solution under application of a high voltage of 30 kV, the migration time is 97.1 s for ketamine and 95.8 s for norketamine, with an electrophoretic resolution of 1.2. The attained detection limit was 83 ng/mL (0.3 µmol/L) for ketamine and 75 ng/mL (0.3 µmol/L) for norketamine; the number of theoretic plates for separation of an equimolar model mixture with a concentration of 2 µg/mL was 683 500 plates/m for ketamine and 695 400 plates/m for norketamine. Laboratory preparation of rat blood plasma is based on mixing 10 µL of plasma with 30 µL of acidified acetonitrile, followed by centrifugation. A pharmacokinetic study demonstrated an exponential decrease in the plasma concentration of ketamine after intravenous application and much slower kinetics for intraperitoneal application.


Subject(s)
Anesthetics/blood , Ketamine/analogs & derivatives , Ketamine/blood , Anesthetics/pharmacokinetics , Animals , Electric Conductivity , Ketamine/metabolism , Ketamine/pharmacokinetics , Limit of Detection , Male , Rats , Rats, Wistar
11.
Electrophoresis ; 39(20): 2605-2611, 2018 10.
Article in English | MEDLINE | ID: mdl-29292827

ABSTRACT

A sensitive capillary electrophoretic method with on-line sample preconcentration by large volume sample stacking has been developed for determination of the anti-microbial agent pentamidine. The separation is performed in a fused silica capillary coated with covalently bound hydroxypropyl cellulose, with an internal diameter of 50 µm and length of 31.5 cm; the background electrolyte was 100 mM acetic acid/Tris at pH 4.7. The stacking is tested using a model sample of 1 µM pentamidine dissolved in 25% infusion solution and 75% acidified acetonitrile. Stacking permits the injection of a sample zone with a length of 95% of the total capillary length to achieve an enhancing factor of 77 compared to low injection into 1.8% of the total capillary length, with simultaneous high separation efficiency of approximately 1 350 000 plates/m. Stacking is based on simultaneous application of a separation field and a hydrodynamic pressure to force the acetonitrile zone out of the capillary. This approach allows the determination of pentamidine in rat blood plasma using only 12.5 µL of plasma treated by the addition of acetonitrile in a ratio of 1:3 v/v. The attained LOD is 0.03 µM and the intra-day repeatability is 0.1% for the migration time and 1.0% for the peak area at the injection 28.3% of capillary length. The performed pharmacokinetic study with ten-second scanning of the blood reveals rapid dynamics of pentamidine in the arterial bloodstream, while the changes are much slower in the venous system.


Subject(s)
Anti-Infective Agents/blood , Electrophoresis, Capillary/methods , Pentamidine/blood , Animals , Limit of Detection , Linear Models , Male , Pressure , Rats , Rats, Wistar , Reproducibility of Results
12.
J Sep Sci ; 40(4): 940-947, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27995764

ABSTRACT

An axial design of a capacitively coupled contactless conductivity detector was tested in combination with fused-silica capillaries with internal diameters of 10, 15, and 25 µm, which are used for high-efficiency electrophoretic separation. The transmission of the signal in the detection probe dependent on the specific conductivity of the solution in the capillary in the range 0-278 mS.m-1 has a complex character and a minimum appears on the curve at very low conductivities. The position of the minimum of the calibration dependence gradually shifts with decreasing frequency of the exciting signal from 1.0 to 0.25 MHz toward lower specific conductivity values. The presence of a minimum on the calibration curves is a natural property of the axial design of contactless conductivity detector, demonstrated by solution of the equivalent electrical circuit of the detection probe, and is specifically caused by the use of shielding foil. The behavior of contactless conductivity detector in the vicinity of the minimum was documented for practical separations of amino acids in solutions of 3.2 M acetic acid with addition of 0-50% v/v methanol.


Subject(s)
Amino Acids/analysis , Electrophoresis, Capillary , Calibration , Electric Conductivity
13.
J Sep Sci ; 40(15): 3138-3143, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28581040

ABSTRACT

A coaxial flow-gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter-current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow-gating interfaces are originally designed for on-line connection of capillary electrophoresis with analytical flow-through methods. The basic properties of the described coaxial flow-gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow-through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K+ , Ba2+ , Na+ , Mg2+ and Li+ ions in aqueous solution at equimolar concentrations of 50 µM. The repeatability of the migration times and peak areas evaluated for K+ , Ba2+ and Li+ ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink.


Subject(s)
Electrophoresis, Capillary , Energy Drinks/analysis , Mineral Waters/analysis , Ions/analysis , Lithium/analysis
14.
Ann Nutr Metab ; 70(4): 293-302, 2017.
Article in English | MEDLINE | ID: mdl-28595189

ABSTRACT

BACKGROUND/AIMS: Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). METHODS: Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. RESULTS: Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p < 0.0001). Oral and IV BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p < 0.0001) and GIP response (p < 0.0001) compared with the IV or placebo. Glucose levels declined significantly (p < 0.001) in the same pattern during both BCAA tests with no change in the placebo group. CONCLUSIONS: An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Incretins/blood , Insulin/blood , Administration, Intravenous , Administration, Oral , Adult , Amino Acids, Branched-Chain/blood , Blood Glucose/metabolism , C-Peptide/blood , Dose-Response Relationship, Drug , Gastric Inhibitory Polypeptide/blood , Glucagon/blood , Glucagon-Like Peptide 1/blood , Humans , Isoleucine/blood , Leucine/blood , Male , Valine/blood , Young Adult
15.
Electrophoresis ; 37(4): 595-600, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26617312

ABSTRACT

Electrokinetic sample injection using two piezoelectric micropumps has been proposed for electrophoresis in short capillaries. The sample is brought to the injection end of the capillary using one of them. Then, the high-voltage source is turned on and the sample is injected electrokinetically for a defined time. The injection is terminated by removal of the sample zone by the flowing separation electrolyte pumped by the second piezoelectric micropump. The RSD value, expressing the repeatability of the injection, does not exceed 4%. The injection apparatus does not contain any mobile mechanical components, there is no movement of the capillary and both its ends remain constantly in the solution during both the sample injection and separation. Thus, the micropumps replace the six-way injection valve and linear pump in similar types of injection apparatuses. The injection was tested in the separation and determination of ammonium and potassium ions in two samples of mineral fertilizers. The separation was performed in background electrolyte containing 500 mM of acetic acid + 20 mM Tris + 2 mM 18-crown-6 (pH 3.3) in a capillary with id 50 µm and total length/length to the contactless conductivity detector of 10.5/8 cm. The injection and separation took place at a voltage of 5 kV and the separation time equaled 20 s. The measured values of the analyte contents corresponded to the value declared by the manufacturer within the reliability interval, where RSD equaled between 3.5 and 4.7%.


Subject(s)
Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Ammonium Compounds/chemistry , Ammonium Compounds/isolation & purification , Crown Ethers/chemistry , Equipment Design , Potassium/chemistry , Potassium/isolation & purification , Reproducibility of Results
16.
Electrophoresis ; 36(16): 1969-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25639649

ABSTRACT

A CE method with contactless conductivity detection has been developed for the clinical determination of the branched chain amino acids (BCAAs) valine, isoleucine and leucine in human blood plasma. The CE separation was performed in an optimised BGE with composition of 3.2 M acetic acid in 20% v/v methanol, pH 2.0. The achieved separation time was 125 s when using a capillary with an effective length of 14.7 cm, electric field intensity of 0.96 kV/cm and simultaneous application of a hydrodynamic pressure of 50 mbar. The separation efficiency in blood plasma equalled 461 000 theoretical plates/m for valine and isoleucine, and 455 000 theoretical plates/m for leucine; the detection limits are equal to 0.4 µM for all three amino acids. The RSD values for repeatability of the migration time equalled 0.1% for measurements during a single day and 0.3% for measurements on different days; the RSD values for repeatability of the peak areas equalled 2.3-2.6% for measurements during a single day and 2.7-4.6% for measurements on different days. It followed from the performed tests that the plasmatic levels of BCAAs attain a maximum 60 min after intravenous application of an infusion of BCAAs.


Subject(s)
Amino Acids, Branched-Chain/blood , Electrophoresis, Capillary/methods , Adult , Amino Acids, Branched-Chain/pharmacokinetics , Clinical Studies as Topic , Diabetes Mellitus , Electric Conductivity , Female , Humans , Insulin/blood , Insulin/metabolism , Limit of Detection , Linear Models , Reproducibility of Results
17.
Electrophoresis ; 36(16): 1976-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26031907

ABSTRACT

Determination of the contents of methanol and ethanol in aqueous solutions was performed by measuring the permittivity of solutions using a contactless conductivity detector (C(4) D) normally used for detection in capillary electrophoresis. The detection cell is a section of a fused silica capillary with an internal diameter of 50 µm with a pair of conductivity electrodes on the external walls. The C(4) D response to samples of methanol/water and ethanol/water mixtures is linear in the concentration interval of approx. 40-100% v/v alcohol content. In the analysis of technical samples of methanol and ethanol, the determination is disturbed by the presence of even trace amounts of salts. This interference can be effectively eliminated by integrated electrophoretic desalination of the sample by the application of a direct current electric voltage with a magnitude of 10 kV to the capillary with the injected sample zone. Under these conditions, the ions migrate out of the sample zone and the detector response is controlled purely by the permittivity of the solvent/water zone. Desalinating is effective for NaCl contents in the range from 0 to 5 mmol/L NaCl. The effectiveness of the desalinating process has been verified on MeOH/water samples and in determination of the ethanol content in distilled beverages normally available in the retail network.


Subject(s)
Conductometry/methods , Electrophoresis, Capillary/methods , Ethanol/analysis , Methanol/analysis , Ethanol/chemistry , Linear Models , Methanol/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sodium Chloride , Water/chemistry
18.
Electrophoresis ; 36(16): 1962-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25752683

ABSTRACT

A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection.


Subject(s)
Electrophoresis, Capillary/methods , Urinalysis/methods , Ammonium Compounds/urine , Cations/urine , Creatinine/urine , Electric Conductivity , Electrophoresis, Capillary/instrumentation , Equipment Design , Humans , Limit of Detection , Linear Models , Pressure , Reproducibility of Results , Spectrophotometry, Ultraviolet , Urinalysis/instrumentation
19.
Electrophoresis ; 35(11): 1660-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24285507

ABSTRACT

A method has been developed for the simultaneous determination of taurine and caffeine using a laboratory-made instrument enabling separation analysis in a short 10.5 cm capillary. The substances are detected using a contactless conductometry/ultraviolet (UV) photometry detector that enables recording both signals at one place in the capillary. The separation of caffeine and taurine was performed using the MEKC technique in a BGE with the composition 40 mM CHES, 15 mM NaOH, and 50 mM SDS, pH 9.36. Under these conditions, the migration time of caffeine is 43 s and of taurine 60 s; LOD for caffeine is 4 mg/L using photometric detection and LOD for taurine is 24 mg/L using contactless conductometric detection. The standard addition method was used for determination in Red Bull energy drink of caffeine 317 mg/L and taurine 3860 mg/L; the contents in Kamikaze drink were 468 mg/L caffeine and 4110 mg/L taurine. The determined values are in good agreement with the declared contents of these substances. RSD does not exceed 3%.


Subject(s)
Caffeine/analysis , Chromatography, Micellar Electrokinetic Capillary/instrumentation , Energy Drinks/analysis , Taurine/analysis , Chromatography, Micellar Electrokinetic Capillary/economics , Conductometry/economics , Conductometry/instrumentation , Electric Conductivity , Equipment Design , Limit of Detection , Photometry/economics , Photometry/instrumentation
20.
Electrophoresis ; 35(7): 956-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24114779

ABSTRACT

A capillary system formed by combining 25 and 100 µm id capillaries was used in the short-end injection mode to determine creatinine and uric acid in human urine. The separation was performed at an electric field intensity of 2.3 kV/cm. Creatinine was determined in a BGE with a composition of 20 mM citric acid/NaOH (pH 3.0), and uric acid was determined in 20 mM MES/NaOH (pH 6.0). Under these conditions, migration times of 12.2 s for creatinine and 8.6 s for uric acid were achieved. The LOD value is 2.4 mg/L for creatinine and 0.9 mg/L for uric acid; the RSD for the migration time varies in the range 0.7-1.1% (intra day) to 1.0-7.5% (inter day); RSDs for the peak areas equalled 3.4-4.0% (intra day) and 4.3-4.7% (inter day). The determined creatinine values in seven urine samples vary in the range 221-1394 mg/L for creatinine and 87-615 mg/L for uric acid. t-Test did not reveal any statistically significant difference between the developed CE methodologies and reference methods - Jaffé reaction for creatinine and enzymatic uricase test for uric acid.


Subject(s)
Creatinine/urine , Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Uric Acid/urine , Adult , Humans , Limit of Detection , Linear Models , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL