Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Emerg Infect Dis ; 29(8): 1540-1546, 2023 08.
Article in English | MEDLINE | ID: mdl-37486160

ABSTRACT

Nontuberculous mycobacteria (NTM) infections are caused by environmental exposure. We describe spatial distribution of NTM infections and associations with sociodemographic factors and flooding in Missouri, USA. Our retrospective analysis of mycobacterial cultures reported to the Missouri Department of Health and Social Services surveillance system during January 1, 2008-December 31, 2019, detected geographic clusters of infection. Multilevel Poisson regression quantified small-area geographic variations and identified characteristics associated with risk for infection. Median county-level NTM infection rate was 66.33 (interquartile range 51-91)/100,000 persons. Risk of clustering was significantly higher in rural areas (rate ratio 2.82, 95% CI 1.90-4.19) and in counties with >5 floodings per year versus no flooding (rate ratio 1.38, 95% CI 1.26-1.52). Higher risk for NTM infection was associated with older age, rurality, and more flooding. Clinicians and public health professionals should be aware of increased risk for NTM infections, especially in similar environments.


Subject(s)
Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Missouri/epidemiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/physiology , Prevalence , Retrospective Studies , Risk Factors , Age Factors , Floods , Rural Population , Male , Female , Middle Aged , Aged , Disease Hotspot
2.
J Public Health Manag Pract ; 29(4): 563-571, 2023.
Article in English | MEDLINE | ID: mdl-37071050

ABSTRACT

OBJECTIVES: The purpose of this work was to segment the Missouri population into unique groups related to COVID-19 vaccine acceptance using data science and behavioral science methods to develop tailored vaccine outreach strategies. METHODS: Cluster analysis techniques were applied to a large data set that aggregated vaccination data with behavioral and demographic data from the American Community Survey and Deloitte's HealthPrism™ data set. Outreach recommendations were developed for each cluster, specific to each group's practical and motivational barriers to vaccination. RESULTS: Following selection procedures, 10 clusters-or segments-of census tracts across Missouri were identified on the basis of k -means clustering analysis of 18 different variables. Each cluster exhibited unique geographic, demographic, socioeconomic, and behavioral patterns, and outreach strategies were developed on the basis of each cluster's practical and motivational barriers. DISCUSSION: The segmentation analysis served as the foundation for "working groups" comprising the 115 local public health agencies (LPHAs) across the state. LPHAs with similar community segments in their service area were grouped together to discuss their communities' specific challenges, share lessons learned, and brainstorm new approaches. The working groups provided a novel way for public health to organize and collaborate across the state. Widening the aperture beyond Missouri, population segmentation via cluster analysis is a promising approach for public health practitioners interested in developing a richer understanding of the types of populations they serve. By pairing segmentation with behavioral science, practitioners can develop outreach programs and communications campaigns that are personalized to the specific behavioral barriers and needs of the population in focus. While our work focused on COVID-19, this approach has broad applicability to enhance the way public health practitioners understand the populations they serve to deliver more tailored services.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Missouri/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Cluster Analysis , Public Health
3.
PLoS Med ; 19(8): e1004048, 2022 08.
Article in English | MEDLINE | ID: mdl-36026527

ABSTRACT

BACKGROUND: Equity in vaccination coverage is a cornerstone for a successful public health response to COVID-19. To deepen understanding of the extent to which vaccination coverage compares with initial strategies for equitable vaccination, we explore primary vaccine series and booster rollout over time and by race/ethnicity, social vulnerability, and geography. METHODS AND FINDINGS: We analyzed data from the Missouri Department of Health and Senior Services on all COVID-19 vaccinations administered across 7 counties in the St. Louis region and 4 counties in the Kansas City region. We compared rates of receiving the primary COVID-19 vaccine series and boosters relative to time, race/ethnicity, zip-code-level Social Vulnerability Index (SVI), vaccine location type, and COVID-19 disease burden. We adapted a well-established tool for measuring inequity-the Lorenz curve-to quantify inequities in COVID-19 vaccination relative to these key metrics. Between 15 December 2020 and 15 February 2022, 1,763,036 individuals completed the primary series and 872,324 received a booster. During early phases of the primary series rollout, Black and Hispanic individuals from high SVI zip codes were vaccinated at less than half the rate of White individuals from low SVI zip codes, but rates increased over time until they were higher than rates in White individuals after June 2021; Asian individuals maintained high levels of vaccination throughout. Increasing vaccination rates in Black and Hispanic communities corresponded with periods when more vaccinations were offered at small community-based sites such as pharmacies rather than larger health systems and mass vaccination sites. Using Lorenz curves, zip codes in the quartile with the lowest rates of primary series completion accounted for 19.3%, 18.1%, 10.8%, and 8.8% of vaccinations while representing 25% of the total population, cases, deaths, or population-level SVI, respectively. When tracking Gini coefficients, these disparities were greatest earlier during rollout, but improvements were slow and modest and vaccine disparities remained across all metrics even after 1 year. Patterns of disparities for boosters were similar but often of much greater magnitude during rollout in fall 2021. Study limitations include inherent limitations in the vaccine registry dataset such as missing and misclassified race/ethnicity and zip code variables and potential changes in zip code population sizes since census enumeration. CONCLUSIONS: Inequities in the initial COVID-19 vaccination and booster rollout in 2 large US metropolitan areas were apparent across racial/ethnic communities, across levels of social vulnerability, over time, and across types of vaccination administration sites. Disparities in receipt of the primary vaccine series attenuated over time during a period in which sites of vaccination administration diversified, but were recapitulated during booster rollout. These findings highlight how public health strategies from the outset must directly target these deeply embedded structural and systemic determinants of disparities and track equity metrics over time to avoid perpetuating inequities in healthcare access.


Subject(s)
COVID-19 , Ethnicity , COVID-19 Vaccines , Humans , Kansas , Missouri , Social Vulnerability
4.
Clin Infect Dis ; 73(9): 1700-1702, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33630998

ABSTRACT

An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus.


Subject(s)
Bunyamwera virus , Bunyaviridae Infections , Adult , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Fever , Humans , Male , Missouri/epidemiology , Phylogeny
5.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: mdl-33075274

ABSTRACT

We describe coronavirus disease (COVID-19) among US food manufacturing and agriculture workers and provide updated information on meat and poultry processing workers. Among 742 food and agriculture workplaces in 30 states, 8,978 workers had confirmed COVID-19; 55 workers died. Racial and ethnic minority workers could be disproportionately affected by COVID-19.


Subject(s)
Agriculture , COVID-19/epidemiology , COVID-19/transmission , Food Industry , SARS-CoV-2 , Adult , Aged , Female , Humans , Male , Middle Aged , United States/epidemiology , Young Adult
6.
MMWR Morb Mortal Wkly Rep ; 69(7): 193-195, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32078594

ABSTRACT

On December 13, 2017, the Missouri Department of Health and Senior Services (MDHSS) was notified of a suspected case of Chagas disease in a Missouri woman. The patient had donated blood, and laboratory screening revealed antibodies to Trypanosoma cruzi, the parasite that causes Chagas disease. Evaluation by physicians found no clinical symptoms consistent with Chagas disease. The patient had no travel history that would have suggested a significant risk for Chagas disease risk and had no occupational exposure to the disease agent. She had never received a blood transfusion or organ transplant. Confirmatory testing of the patient's serum at CDC for T. cruzi antibody was consistent with infection. These findings raise the possibility that the exposure to T. cruzi occurred locally (autochthonously) in Missouri. Although the insect vector for the parasite T. cruzi, triatomines (commonly known as "kissing bugs"), has been identified previously in Missouri, no locally acquired human cases of Chagas disease have been identified in the state. Health care providers and public health professionals should be aware of the possibility of locally acquired Chagas disease in the southern United States.


Subject(s)
Chagas Disease/diagnosis , Antibodies, Protozoan/isolation & purification , Blood Donors , Chagas Disease/transmission , Female , Humans , Middle Aged , Missouri , Trypanosoma cruzi/immunology
7.
MMWR Morb Mortal Wkly Rep ; 69(27): 887-892, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32644986

ABSTRACT

Meat and poultry processing facilities face distinctive challenges in the control of infectious diseases, including coronavirus disease 2019 (COVID-19) (1). COVID-19 outbreaks among meat and poultry processing facility workers can rapidly affect large numbers of persons. Assessment of COVID-19 cases among workers in 115 meat and poultry processing facilities through April 27, 2020, documented 4,913 cases and 20 deaths reported by 19 states (1). This report provides updated aggregate data from states regarding the number of meat and poultry processing facilities affected by COVID-19, the number and demographic characteristics of affected workers, and the number of COVID-19-associated deaths among workers, as well as descriptions of interventions and prevention efforts at these facilities. Aggregate data on confirmed COVID-19 cases and deaths among workers identified and reported through May 31, 2020, were obtained from 239 affected facilities (those with a laboratory-confirmed COVID-19 case in one or more workers) in 23 states.* COVID-19 was confirmed in 16,233 workers, including 86 COVID-19-related deaths. Among 14 states reporting the total number of workers in affected meat and poultry processing facilities (112,616), COVID-19 was diagnosed in 9.1% of workers. Among 9,919 (61%) cases in 21 states with reported race/ethnicity, 87% occurred among racial and ethnic minority workers. Commonly reported interventions and prevention efforts at facilities included implementing worker temperature or symptom screening and COVID-19 education, mandating face coverings, adding hand hygiene stations, and adding physical barriers between workers. Targeted workplace interventions and prevention efforts that are appropriately tailored to the groups most affected by COVID-19 are critical to reducing both COVID-19-associated occupational risk and health disparities among vulnerable populations. Implementation of these interventions and prevention efforts† across meat and poultry processing facilities nationally could help protect workers in this critical infrastructure industry.


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks , Food-Processing Industry , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Adult , Animals , COVID-19 , Female , Humans , Male , Meat , Middle Aged , Pandemics , Poultry , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 69(18)2020 May 08.
Article in English | MEDLINE | ID: mdl-32379731

ABSTRACT

Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4).


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Food-Processing Industry , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Humans , Meat , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Poultry , United States/epidemiology
9.
Emerg Infect Dis ; 25(2): 358-360, 2019 02.
Article in English | MEDLINE | ID: mdl-30511916

ABSTRACT

We estimated the seroprevalence of Heartland virus antibodies to be 0.9% (95% CI 0.4%-4.2%) in a convenience sample of blood donors from northwestern Missouri, USA, where human cases and infected ticks have been identified. Although these findings suggest that some past human infections were undetected, the estimated prevalence is low.


Subject(s)
Antibodies, Viral/immunology , Blood Donors , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/immunology , Phlebovirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Bunyaviridae Infections/blood , Female , Geography, Medical , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Missouri/epidemiology , Population Surveillance , Seroepidemiologic Studies , Young Adult
10.
Am J Kidney Dis ; 74(5): 610-619, 2019 11.
Article in English | MEDLINE | ID: mdl-31375298

ABSTRACT

RATIONALE & OBJECTIVE: Contaminated water and other fluids are increasingly recognized to be associated with health care-associated infections. We investigated an outbreak of Gram-negative bloodstream infections at 3 outpatient hemodialysis facilities. STUDY DESIGN: Matched case-control investigations. SETTING & PARTICIPANTS: Patients who received hemodialysis at Facility A, B, or C from July 2015 to November 2016. EXPOSURES: Infection control practices, sources of water, dialyzer reuse, injection medication handling, dialysis circuit priming, water and dialysate test findings, environmental reservoirs such as wall boxes, vascular access care practices, pulsed-field gel electrophoresis, and whole-genome sequencing of bacterial isolates. OUTCOMES: Cases were defined by a positive blood culture for any Gram-negative bacteria drawn July 1, 2015 to November 30, 2016 from a patient who had received hemodialysis at Facility A, B, or C. ANALYTICAL APPROACH: Exposures in cases and controls were compared using matched univariate conditional logistic regression. RESULTS: 58 cases of Gram-negative bloodstream infection occurred; 48 (83%) required hospitalization. The predominant organisms were Serratia marcescens (n=21) and Pseudomonas aeruginosa (n=12). Compared with controls, cases had higher odds of using a central venous catheter for dialysis (matched odds ratio, 54.32; lower bound of the 95% CI, 12.19). Facility staff reported pooling and regurgitation of waste fluid at recessed wall boxes that house connections for dialysate components and the effluent drain within dialysis treatment stations. Environmental samples yielded S marcescens and P aeruginosa from wall boxes. S marcescens isolated from wall boxes and case-patients from the same facilities were closely related by pulsed-field gel electrophoresis and whole-genome sequencing. We identified opportunities for health care workers' hands to contaminate central venous catheters with contaminated fluid from the wall boxes. LIMITATIONS: Limited patient isolates for testing, on-site investigation occurred after peak of infections. CONCLUSIONS: This large outbreak was linked to wall boxes, a previously undescribed source of contaminated fluid and biofilms in the immediate patient care environment.


Subject(s)
Bacteremia/epidemiology , Cross Infection/epidemiology , Disease Outbreaks/statistics & numerical data , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/epidemiology , Renal Dialysis/adverse effects , Aged , Bacteremia/microbiology , Female , Follow-Up Studies , Gram-Negative Bacterial Infections/microbiology , Humans , Male , Middle Aged , Outpatients , Retrospective Studies , United States/epidemiology
11.
Transpl Infect Dis ; 21(4): e13098, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31009160

ABSTRACT

Tick-borne infections represent a significant health risk each year in the United States. Immunocompromised patients are typically at risk of more severe disease manifestations than their immunocompetent counterparts. Here we report a case of a newly emerging phlebovirus, Heartland virus, in a heart transplant recipient.


Subject(s)
Bunyaviridae Infections/diagnosis , Heart Transplantation/adverse effects , Transplant Recipients , Aged , Humans , Male , Missouri , Phlebovirus/pathogenicity
12.
Clin Infect Dis ; 67(4): 485-492, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29617957

ABSTRACT

Background: During the 2014-2015 influenza season in the United States, 256 cases of influenza-associated parotitis were reported from 27 states. We conducted a case-control study and laboratory investigation to further describe this rare clinical manifestation of influenza. Methods: During February 2015-April 2015, we interviewed 50 cases (with parotitis) and 124 ill controls (without parotitis) with laboratory-confirmed influenza; participants resided in 11 states and were matched by age, state, hospital admission status, and specimen collection date. Influenza viruses were characterized using real-time polymerase chain reaction and next-generation sequencing. We compared cases and controls using conditional logistic regression. Specimens from additional reported cases were also analyzed. Results: Cases, 73% of whom were aged <20 years, experienced painful (86%), unilateral (68%) parotitis a median of 4 (range, 0-16) days after onset of systemic or respiratory symptoms. Cases were more likely than controls to be male (76% vs 51%; P = .005). We detected influenza A(H3N2) viruses, genetic group 3C.2a, in 100% (32/32) of case and 92% (105/108) of control specimens sequenced (P = .22). Influenza B and A(H3N2) 3C.3 and 3C.3b genetic group virus infections were detected in specimens from additional cases. Conclusions: Influenza-associated parotitis, as reported here and in prior sporadic case reports, seems to occur primarily with influenza A(H3N2) virus infection. Because of the different clinical and infection control considerations for mumps and influenza virus infections, we recommend clinicians consider influenza in the differential diagnoses among patients with acute parotitis during the influenza season.


Subject(s)
Influenza, Human/complications , Parotitis/virology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Male , Middle Aged , Parotitis/diagnosis , Parotitis/epidemiology , Seasons , United States , Young Adult
13.
Clin Infect Dis ; 67(4): 493-501, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29617951

ABSTRACT

Background: During the 2014-2015 US influenza season, 320 cases of non-mumps parotitis (NMP) among residents of 21 states were reported to the Centers for Disease Control and Prevention (CDC). We conducted an epidemiologic and laboratory investigation to determine viral etiologies and clinical features of NMP during this unusually large occurrence. Methods: NMP was defined as acute parotitis or other salivary gland swelling of >2 days duration in a person with a mumps- negative laboratory result. Using a standardized questionnaire, we collected demographic and clinical information. Buccal samples were tested at the CDC for selected viruses, including mumps, influenza, human parainfluenza viruses (HPIVs) 1-4, adenoviruses, cytomegalovirus, Epstein-Barr virus (EBV), herpes simplex viruses (HSVs) 1 and 2, and human herpes viruses (HHVs) 6A and 6B. Results: Among the 320 patients, 65% were male, median age was 14.5 years (range, 0-90), and 67% reported unilateral parotitis. Commonly reported symptoms included sore throat (55%) and fever (48%). Viruses were detected in 210 (71%) of 294 NMP patients with adequate samples for testing, ≥2 viruses were detected in 37 samples, and 248 total virus detections were made among all samples. These included 156 influenza A(H3N2), 42 HHV6B, 32 EBV, 8 HPIV2, 2 HPIV3, 3 adenovirus, 4 HSV-1, and 1 HSV-2. Influenza A(H3N2), HHV6B, and EBV were the most frequently codetected viruses. Conclusions: Our findings suggest that, in addition to mumps, clinicians should consider respiratory viral (influenza) and herpes viral etiologies for parotitis, particularly among patients without epidemiologic links to mumps cases or outbreaks.


Subject(s)
Influenza, Human/complications , Influenza, Human/epidemiology , Parotitis/virology , Viruses/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mumps , Parotitis/epidemiology , Pharyngitis/virology , Seasons , Surveys and Questionnaires , United States/epidemiology , Young Adult
15.
Emerg Infect Dis ; 24(8): 1444-1452, 2018 07.
Article in English | MEDLINE | ID: mdl-30014837

ABSTRACT

Although coccidioidomycosis in Arizona and California has been well-characterized, much remains unknown about its epidemiology in states where it is not highly endemic. We conducted enhanced surveillance in 14 such states in 2016 by identifying cases according to the Council of State and Territorial Epidemiologists case definition and interviewing patients about their demographic characteristics, clinical features, and exposures. Among 186 patients, median time from seeking healthcare to diagnosis was 38 days (range 1-1,654 days); 70% had another condition diagnosed before coccidioidomycosis testing occurred (of whom 83% were prescribed antibacterial medications); 43% were hospitalized; and 29% had culture-positive coccidioidomycosis. Most (83%) patients from nonendemic states had traveled to a coccidioidomycosis-endemic area. Coccidioidomycosis can cause severe disease in residents of non-highly endemic states, a finding consistent with previous studies in Arizona, and less severe cases likely go undiagnosed or unreported. Improved coccidioidomycosis awareness in non-highly endemic areas is needed.


Subject(s)
Coccidioidomycosis/epidemiology , Adolescent , Adult , Age Factors , Aged , Child , Coccidioidomycosis/ethnology , Communicable Diseases, Emerging/epidemiology , Ethnicity , Female , Humans , Male , Middle Aged , Patient Acceptance of Health Care/statistics & numerical data , Population Surveillance/methods , Travel , United States/epidemiology , Young Adult
16.
MMWR Morb Mortal Wkly Rep ; 66(1): 19-22, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28081064

ABSTRACT

Reporting causes of death accurately is essential to public health and hospital-based programs; however, some U.S. studies have identified substantial inaccuracies in cause of death reporting. Using CDC's national inpatient hospital death rates as a benchmark, the Missouri Department of Health and Senior Services (DHSS) analyzed inpatient death rates reported by hospitals with high inpatient death rates in St. Louis and Kansas City metro areas. Among the selected hospitals with high inpatient death rates, 45.8% of death certificates indicated an underlying cause of death that was inconsistent with CDC's Guidelines for Death Certificate completion. Selected hospitals with high inpatient death rates were more likely to overreport heart disease and renal disease, and underreport cancer as an underlying cause of death. Based on these findings, the Missouri DHSS initiated a new web-based training module for death certificate completion based on the CDC guidelines in an effort to improve accuracy in cause of death reporting.


Subject(s)
Benchmarking/methods , Death Certificates , Hospital Mortality , Cause of Death , Centers for Disease Control and Prevention, U.S. , Hospitals , Humans , Missouri/epidemiology , United States/epidemiology
19.
MMWR Morb Mortal Wkly Rep ; 65(10): 253-6, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26985578

ABSTRACT

On September 18, 2014, the Missouri Department of Health and Senior Services (MDHSS) was notified of a suspected rabies case in a Missouri resident. The patient, a man aged 52 years, lived in a rural, deeply wooded area, and bat sightings in and around his home were anecdotally reported. Exposure to bats poses a risk for rabies. After two emergency department visits for severe neck pain, paresthesia in the left arm, upper body tremors, and anxiety, he was hospitalized on September 13 for encephalitis of unknown etiology. On September 24, he received a diagnosis of rabies and on September 26, he died. Genetic sequencing tests confirmed infection with a rabies virus variant associated with tricolored bats. Health care providers need to maintain a high index of clinical suspicion for rabies in patients who have unexplained, rapidly progressive encephalitis, and adhere to recommended infection control practices when examining and treating patients with suspected infectious diseases.


Subject(s)
Rabies virus/isolation & purification , Rabies/diagnosis , Animals , Chiroptera , Encephalitis/etiology , Fatal Outcome , Humans , Male , Middle Aged , Missouri , Public Health , Rabies virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL