Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Oecologia ; 198(4): 889-904, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35325288

ABSTRACT

Global temperatures are increasing, affecting timing and availability of vegetation along with relationships between plants and their consumers. We examined the effect of population density, herd body condition in the previous year, elevation, plant productivity and phenology, snow, and winter onset on juvenile body mass in 63 semi-domesticated populations of Rangifer tarandus throughout Norway using spatiotemporal generalized additive models (GAMs) and varying coefficient models (VCMs). Optimal climate windows were calculated at both the regional and national level using a novel nonlinear climate window algorithm optimized for prediction. Spatial and temporal variation in effects of population and environmental predictors were considered using a model including covariates decomposed into spatial, temporal, and residual components. The performance of this decomposed model was compared to spatiotemporal GAMs and VCMs. The decomposed model provided the best fit and lowest prediction errors. A positive effect of herd body condition in the previous year explained most of the deviance in calf body mass, followed by a more complex effect of population density. A negative effect of timing of spring and positive effect of winter onset on juvenile body mass suggested that a snow free season was positive for juvenile body mass growth. Our findings suggest early spring onset and later winter permanent snow cover as reinforcers of early-life conditions which support more robust reindeer populations. Our methodological improvements for climate window analyses and effect size measures for decomposed variables provide important contributions to account for, measure, and interpret nonlinear relationships between climate and animal populations at large scales.


Subject(s)
Climate Change , Reindeer , Animals , Arctic Regions , Herbivory , Plants , Seasons , Snow
2.
Glob Chang Biol ; 26(5): 2897-2907, 2020 05.
Article in English | MEDLINE | ID: mdl-32181966

ABSTRACT

Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial ß diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial ß diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non-linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial ß diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large-scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.


Subject(s)
Ecosystem , Food Chain , Animals , Biodiversity , Fisheries , Predatory Behavior
3.
Glob Chang Biol ; 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33231361

ABSTRACT

Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die-offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual-based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six-week delay in snow-onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter-onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.

4.
Ecol Appl ; 30(6): e02120, 2020 09.
Article in English | MEDLINE | ID: mdl-32159900

ABSTRACT

Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.


Subject(s)
Climate Change , Norway , Population Density , Population Dynamics , Seasons
5.
J Anim Ecol ; 89(6): 1419-1432, 2020 06.
Article in English | MEDLINE | ID: mdl-32108334

ABSTRACT

Theory predicts that animal populations will be synchronized over large distances by weather and climatic conditions with high spatial synchrony. However, local variation in population responses to weather, and low synchrony in key weather variables or in other ecological processes may reduce the population synchrony. We investigated to what extent temperature and precipitation during different periods of the year synchronized juvenile body mass of moose and reindeer in Norway. We expected high synchronizing effect of weather variables with a high and consistent explanatory power on body mass dynamics across populations, and a weaker synchronizing effect of weather variables whose effect on body mass varied among populations. Juvenile body mass in both species was related to temperature and precipitation during several periods of the year. Temperature had the strongest explanatory power in both species, with a similar effect across all populations. There was higher spatial synchrony in temperature compared to precipitation, and accordingly temperature had the strongest synchronizing effect on juvenile body mass. Moreover, periods with strong explanatory power had stronger synchronizing effect on juvenile body mass in both species. However, weather variables with large variation in the effects on body mass among populations had weak synchronizing effect. The results confirm that weather has a large impact on the spatial structure of population properties but also that spatial heterogeneity, for instance, in environmental change or population density may affect how and to what extent populations are synchronized.


Subject(s)
Reindeer , Weather , Animals , Norway , Population Dynamics , Seasons , Temperature
6.
Glob Chang Biol ; 23(4): 1374-1389, 2017 04.
Article in English | MEDLINE | ID: mdl-27426229

ABSTRACT

The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.


Subject(s)
Herbivory , Reindeer , Animals , Arctic Regions , Body Mass Index , Female , Population Dynamics , Seasons , Svalbard
7.
Ecol Appl ; 27(8): 2416-2427, 2017 12.
Article in English | MEDLINE | ID: mdl-28871616

ABSTRACT

Rangifer (caribou/reindeer) management has been suggested to mitigate the temperature-driven transition of Arctic tundra into a shrubland state, yet how this happens is uncertain. Here we study this much focused ecosystem state transition in riparian areas, where palatable willows (Salix) are dominant tall shrubs and highly responsive to climate change. For the state transition to take place, small life stages must become tall and abundant. Therefore we predicted that the performance of small life stages (potential recruits) of the tall shrubs were instrumental to the focal transition, where Rangifer managed at high population density would keep the small-stage shrubs in a "browse trap" independent of summer temperature. We used a large-scale quasi-experimental study design that included real management units that spanned a wide range of Rangifer population densities and summer temperatures in order to assess the relative importance of these two driving variables. Ground surveys provided data on density and height of the small shrub life stages, while the distributional limit (shrubline) of established shrublands (the tall shrub life stage) was derived from aerial photographs. Where Rangifer densities were above a threshold of approximately 5 animals/km2 , we found, in accordance with the expectation of a "browse trap," that the small life stages of shrubs in grasslands were at low height and low abundance. At Rangifer densities below this threshold, the small life stages of shrubs were taller and more abundant indicating Rangifer were no longer in control of the grassland state. For the established shrubland state, we found that the shrubline was at a 100-m lower elevation in the management units where Rangifer had been browsing in summer as opposed to the migratory ranges with no browsing in summer. In both seasonal ranges, the shrubline increased 100 m per 1°C increment in temperature. Our study supports the proposal that Rangifer management within a sustainable range of animal densities can mitigate the much-focused transition from grassland to shrubland in a warming Arctic.


Subject(s)
Climate Change , Conservation of Natural Resources , Reindeer , Tundra , Animals , Arctic Regions , Norway , Population Density , Temperature
9.
Environ Monit Assess ; 189(11): 595, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29086027

ABSTRACT

The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996-2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Environment , Norway , Petroleum Pollution/analysis , Petroleum Pollution/statistics & numerical data , Water Pollution/analysis , Water Pollution/statistics & numerical data
10.
11.
J Anim Ecol ; 84(5): 1242-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25981204

ABSTRACT

1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem.


Subject(s)
Biodiversity , Fisheries , Food Chain , Gadus morhua/physiology , Animals , Atlantic Ocean , Models, Biological , Seasons , Temperature , Weather
12.
J Anim Ecol ; 81(2): 364-76, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21985598

ABSTRACT

1. Recent studies have shown that optimal reproductive allocation depends on both climatic conditions and population density. We tested this hypothesis using six years of demographic data from eight reindeer (Rangifer tarandus) populations coupled with data on population abundance and vegetation greenness [measured using the Enhanced Vegetation Index (EVI)]. 2. Female spring body mass positively affected summer body mass gain, and lactating females were unable to compensate for harsh winters as efficiently as barren ones. Female spring body mass was highly sensitive to changes in population abundance and vegetation greenness and less dependent on previous autumn body mass and reproductive status. Lactating females were larger than barren females in the spring. Moreover, female autumn body mass was positively related to female autumn body mass and reproductive success and was not very sensitive to changes in vegetation greenness and population abundance. 3. Offspring autumn body mass was positively related to both maternal spring and autumn body mass, and as predicted from theory, offspring were more sensitive to changes in vegetation greenness and population abundance than adult females. A lagged cost of reproduction was present as larger females who were barren, the previous year produced larger offspring than equally sized females that successfully reproduced the previous year. 4. Reproductive success was negatively related to female autumn body mass and positively related to female spring body mass. Moreover, females who successfully reproduced the previous year experienced the highest reproductive success. The fact that negative density-dependence was only present for females that had successfully reproduced the previous year further support the hypothesis that reproduction is costly. 5. This study shows that female reindeer buffer their reproductive allocation according to expected winter conditions and that their buffering abilities were limited by population abundance and a lagged cost of reproduction and enhanced by vegetation greenness.


Subject(s)
Body Weight , Reindeer/physiology , Reproduction , Animals , Climate , Eating , Ecology , Female , Norway , Population Density , Seasons
13.
J Anim Ecol ; 81(5): 986-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22428953

ABSTRACT

1. Despite a growing interest in wildlife disease ecology, there is a surprising lack of knowledge about the exposure dynamics of individual animals to naturally circulating infectious agents and the impact of such agents on host life-history traits. 2. The exploration of these questions requires detailed longitudinal data on individual animals that can be captured multiple times during their life but also requires being able to account for several sources of uncertainty, notably the partial observation or recapture of individuals at each sampling occasion. 3. We use a multi-year dataset to (i) assess the potential effect of exposure to the tick-borne agent of Lyme disease, Borrelia burgdorferi sensu lato (Bbsl), on adult apparent survival for one of its natural long-lived hosts, the Black-legged kittiwake (Rissa tridactyla), and (ii) investigate the temporal dynamics of individual immunological status in kittiwakes to infer the rate of new exposure and the persistence of the immune response. Using a multi-event modelling approach, potential uncertainties arising from partial observations were explicitly taken into account. 4. The potential impact of Bbsl on kittiwake survival was also evaluated via an experimental approach: the apparent survival of a group of breeding birds treated with an antibiotic was compared with that of a control group. 5. No impact of exposure to Bbsl was detected on adult survival in kittiwakes, in either observational or experimental data. 6. An annual seroconversion rate (from negative to positive) of 1·5% was estimated, but once an individual became seropositive, it remained so with a probability of 1, suggesting that detectable levels of anti-Bbsl antibodies persist for multiple years. 7. These results, in combination with knowledge on patterns of exposure to the tick vector of Bbsl, provide important information for understanding the spatio-temporal nature of the interaction between this host and several of its parasites. Furthermore, our analyses highlight the utility of capture-mark-recapture approaches handling state uncertainty for disease ecology studies.


Subject(s)
Bird Diseases/microbiology , Borrelia burgdorferi Group/isolation & purification , Charadriiformes , Animals , Bird Diseases/blood , Bird Diseases/epidemiology , Ixodes , Models, Biological , Norway/epidemiology , Seroepidemiologic Studies , Serologic Tests , Time Factors , Uncertainty
14.
Ecology ; 92(1): 228-39, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21560693

ABSTRACT

Functional response diversity is defined as the diversity of responses to environmental change among species that contribute to the same ecosystem function. Because different ecological processes dominate on different spatial and temporal scales, response diversity is likely to be scale dependent. Using three extensive data sets on seabirds, pelagic fish, and zooplankton, we investigate the strength and diversity in the response of seabirds to prey in the North Sea over three scales of ecological organization. Two-stage analyses were used to partition the variance in the abundance of predators and prey among the different scales of investigation: variation from year to year, variation among habitats, and variation on the local patch scale. On the year-to-year scale, we found a strong and synchronous response of seabirds to the abundance of prey, resulting in low response diversity. Conversely, as different seabird species were found in habitats dominated by different prey species, we found a high diversity in the response of seabirds to prey on the habitat scale. Finally, on the local patch scale, seabirds were organized in multispecies patches. These patches were weakly associated with patches of prey, resulting in a weak response strength and a low response diversity. We suggest that ecological similarities among seabird species resulted in low response diversity on the year-to-year scale. On the habitat scale, we suggest that high response diversity was due to interspecific competition and niche segregation among seabird species. On the local patch scale, we suggest that facilitation with respect to the detection and accessibility of prey patches resulted in overlapping distribution of seabirds but weak associations with prey. The observed scale dependencies in response strength and diversity have implications for how the seabird community will respond to different environmental disturbances.


Subject(s)
Biodiversity , Charadriiformes/physiology , Fishes/physiology , Predatory Behavior/physiology , Animals , Models, Biological , North Sea , Time Factors
15.
Oecologia ; 162(3): 627-39, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20033822

ABSTRACT

Organisms should adopt a risk-sensitive reproductive allocation when summer reproductive allocation competes with survival in the coming winter. This trade off is shown through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis on female reindeer in a population that has experienced a time period of dramatic increase in abundance. Environmental conditions during winter were fairly stable (with the exception of 1 year). We conclude that increased population abundance (perhaps in interaction with winter environmental conditions) could have represented a worsening of winter environmental conditions as both autumn offspring and spring female body mass decreased during the course of the study. Moreover, we found that the cost of reproduction was related to environmental conditions as: (1) autumn body mass was larger for barren than for lactating females, and this difference was temporally highly variable; (2) lactating females produced smaller offspring than barren ones in the following year; and (3) reproductive output (offspring size) decreased over time. We also found evidence of quality effects as lactating females had a higher reproductive success in the following year. In sum, a worsening of winter conditions lead to: (1) decreased reproductive output; (2) lowered autumn body mass for lactating females; and (3) increased body mass for barren females. Since females reduce their reproductive allocation as winter conditions becomes more severe, we conclude that reindeer have adopted a risk-sensitive reproductive allocation.


Subject(s)
Reindeer/physiology , Reproduction , Animals , Female , Stochastic Processes
16.
Ecol Evol ; 10(24): 14272-14281, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391714

ABSTRACT

Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large-bodied fish predators.The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top-down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.

17.
Ecology ; 90(11): 3197-208, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19967875

ABSTRACT

The purpose of the present study was to inspect the response of the Atlantic Puffin (Fratercula arctica) to an experimental manipulation of the investment needed to successfully raise an offspring. We achieved this by replacing an old offspring with a younger chick, and vice versa, thereby prolonging and shortening the chick-rearing period. To examine any costs of reproduction we then followed the breeding success, the recruitment of young to the population, and the survival of parents for 11 years following the manipulation. Parents in the prolonged and shortened category had a lower breeding success than controls mainly because parents deserted their chick shortly after swapping. Among those that raised their chick, the age and body mass of foster chicks at fledging were the same in all three categories even though the parents had raised chicks for different lengths of time. The recruitment of young to the breeding population was high and independent of treatment. Likewise, the survival of adults was independent of treatment. For the 11 years after the experiment, however, the resighting rate of those that deserted their chick was clearly lower than among those that accepted their foster chick. For parents that raised their foster chick, the survival to the following year was positively related to their body mass. The results support the hypothesis that puffins have a highly flexible parental investment, which they adjust according to their own individual quality and the survival prospects of the chick.


Subject(s)
Behavior, Animal/physiology , Charadriiformes/physiology , Reproduction/physiology , Animals , Female , Male , Time Factors
18.
Infect Genet Evol ; 8(3): 352-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18394972

ABSTRACT

A potential role of seabirds in spreading Lyme disease (LB) spirochetes over large spatial scales was suggested more than 10 years ago when Borrelia garinii was observed in marine birds of both hemispheres. Since then, there have been few studies examining the diversity of Borrelia spp. circulating in seabirds, or the potential interaction between terrestrial and marine disease cycles. To explore these aspects, we tested 402 Ixodes uriae ticks collected from five colonial seabird species by amplification of the flaB gene. Both the average prevalence (26.0%+/-3.9) and diversity of LB spirochetes was high. Phylogenetic analyses grouped marine isolates in two main clades: one associated with B. garinii and another with B. lusitaniae, a genospecies typically associated with lizards. One sequence also clustered most closely with B. burgdorferi sensu stricto. Prevalence in ticks varied both among seabird species within colonies and among colonies. However, there was no clear association between different Borrelia isolates and a given seabird host species. Our findings indicate that LB spirochetes circulating in the marine system are more diverse than previously described and support the hypothesis that seabirds may be an important component in the global epidemiology and evolution of Lyme disease. Future work should help determine the extent to which isolates are shared between marine and terrestrial systems.


Subject(s)
Bird Diseases/epidemiology , Bird Diseases/genetics , Borrelia burgdorferi/genetics , Genetic Variation , Lyme Disease/epidemiology , Lyme Disease/veterinary , Animals , Birds , Iceland/epidemiology , Norway/epidemiology , Oceans and Seas , Phylogeny , Prevalence
19.
Ecology ; 89(3): 829-37, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18459345

ABSTRACT

When reproduction competes with the amount of resources available for survival during an unpredictable nonbreeding season, individuals should adopt a risk-sensitive regulation of their reproductive allocation. We tested this hypothesis on female reindeer (Rangifer tarandus), which face a trade-off between reproduction and acquisition of body reserves during spring and summer, with autumn body mass functioning as insurance against stochastic winter climatic severity. The study was conducted in a population consisting of two herds: one that received supplementary winter feeding for four years while the other utilized natural pastures. The females receiving additional forage allocated more to their calves. Experimental translocation of females between the herds was conducted to simulate two contrasting rapid alterations of winter conditions. When females receiving supplementary feeding were moved to natural pastures, they promptly reduced their reproductive allocation the following summer. However, when winter conditions were improved, females were reluctant to increase their reproductive allocation. This asymmetric response to improved vs. reduced winter conditions is consistent with a risk-averse adjustment in reproductive allocation. The ability of individuals to track their environment and the concordant risk-sensitive adjustment of reproductive allocation may render subarctic reindeer more resilient to climate change than previously supposed.


Subject(s)
Adaptation, Physiological , Climate , Food Supply , Reindeer/physiology , Reproduction/physiology , Adipose Tissue/metabolism , Animals , Animals, Newborn/growth & development , Female , Pregnancy , Reindeer/metabolism , Seasons , Stochastic Processes
20.
Ecology ; 88(12): 3183-91, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18229852

ABSTRACT

Little is known about the long-term persistence of specific antibodies (Ab) in natural host-parasite systems despite its potential epidemiological and ecological importance. In long-lived species, knowledge of the dynamics of individual immunological profiles can be important not only for interpreting serology results, but also for assessing transmission dynamics and the potential selective pressures acting on parasites. The aim of this paper was to investigate temporal variation in levels of specific Ab against the bacterium Borrelia burgdorferi sensu lato in adults of a long-lived colonial seabird, the Black-legged Kittiwake Rissa tridactyla. In wild populations, adults are naturally exposed each breeding season to a Borrelia vector, the tick Ixodes uriae. Breeding birds were captured during four consecutive breeding seasons, and parasite infestation quantified. Using enzyme-linked immunosorbent assay (ELISA) and immunoblots, we found that the immunological profiles of anti-Borrelia Ab were highly repeatable among years, reflecting the interannual persistence of Ab levels. We nevertheless also observed that year-to-year changes of Ab levels were related to exposure to ticks in the previous year. The long-term persistence of Ab levels may be an important mechanism of individual protection against future exposure to the microparasite. It will also affect the availability of susceptible hosts, and thus the transmission dynamics of the bacterium. These results illustrate the need to consider the dynamics of the immune response in order to better understand the evolutionary ecology of host-parasite interactions in natural populations.


Subject(s)
Antibodies, Bacterial/blood , Bird Diseases/immunology , Borrelia burgdorferi Group/immunology , Lyme Disease/veterinary , Animals , Arachnid Vectors/microbiology , Bird Diseases/blood , Bird Diseases/transmission , Birds , Female , Host-Pathogen Interactions , Ixodes/microbiology , Lyme Disease/blood , Lyme Disease/immunology , Lyme Disease/transmission , Male , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL