Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000655

ABSTRACT

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Subject(s)
Deoxyadenosines , Methionine Adenosyltransferase , Neoplasms , Protein-Arginine N-Methyltransferases , Purine-Nucleoside Phosphorylase , S-Adenosylmethionine , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxyadenosines/antagonists & inhibitors , Deoxyadenosines/genetics , Deoxyadenosines/metabolism , Drug Synergism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Neoplasms/genetics , Neoplasms/physiopathology , Neoplasms/therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , S-Adenosylmethionine/metabolism
2.
Biochemistry ; 62(11): 1776-1785, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37204861

ABSTRACT

5'-Methylthioadenosine nucleosidases (MTANs) catalyze the hydrolysis of 5'-substituted adenosines to form adenine and 5-substituted ribose. Escherichia coli MTAN (EcMTAN) and Helicobacter pylori MTAN (HpMTAN) form late and early transition states, respectively. Transition state analogues designed for the late transition state bind with fM to pM affinity to both classes of MTANs. Here, we compare the residence times (off-rates) with the equilibrium dissociation constants for HpMTAN and EcMTAN, using five 5'-substituted DADMe-ImmA transition state analogues. The inhibitors dissociate orders of magnitude slower from EcMTAN than from HpMTAN. For example, the slowest release rate was observed for the EcMTAN-HTDIA complex (t1/2 = 56 h), compared to a release rate of t1/2 = 0.3 h for the same complex with HpMTAN, despite similar structures and catalytic sites for these enzymes. Other inhibitors also reveal disconnects between residence times and equilibrium dissociation constants. Residence time is correlated with pharmacological efficacy; thus, experimental analyses of dissociation rates are useful to guide physiological function of tight-binding inhibitors. Steered molecular dynamics simulations for the dissociation of an inhibitor from both EcMTAN and HpMTAN provide atomic level mechanistic insight for the differences in dissociation kinetics and inhibitor residence times for these enzymes.


Subject(s)
Enzyme Inhibitors , Escherichia coli Proteins , Enzyme Inhibitors/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Deoxyadenosines/chemistry
3.
Biochemistry ; 62(14): 2182-2201, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37418678

ABSTRACT

Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.


Subject(s)
Trypanosoma cruzi , Humans , Trypanosoma cruzi/metabolism , Pentosyltransferases/metabolism , Purines/pharmacology , Purines/chemistry , Guanine/metabolism
4.
Org Biomol Chem ; 21(30): 6134-6140, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37462413

ABSTRACT

Nucleoside analogues such as the antiviral agents galidesivir and ribavirin are of synthetic interest. This work reports a "one-pot" preparation of similar fleximers using a bifunctional copper catalyst that generates the aryl azide in situ, which is captured by a terminal alkyne to effect triazole formation.

5.
Biochemistry ; 61(19): 2088-2105, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36193631

ABSTRACT

Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people worldwide. Current antiparasitic treatments for Chagas disease are ineffective in treating advanced, chronic stages of the disease, and are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines from the host. Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are enzymes that are critical for the salvage of preformed purines, catalyzing the formation of inosine monophosphate (IMP) and guanosine monophosphate (GMP) from the nucleobases hypoxanthine and guanine, respectively. Due to the central role of HGPRTs in purine salvage, these enzymes are promising targets for the development of new treatment methods for Chagas disease. In this study, we characterized two gene products in the T. cruzi CL Brener strain that encodes enzymes with functionally identical HGPRT activities in vitro: TcA (TcCLB.509693.70) and TcC (TcCLB.506457.30). The TcC isozyme was kinetically characterized to reveal mechanistic details on catalysis, including identification of the rate-limiting step(s) of catalysis. Furthermore, we identified and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors (TSAIs) of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT), where the most potent compound bound to T. cruzi HGPRT with low nanomolar affinity. Our results validated the repurposing of TSAIs to serve as selective inhibitors for orthologous molecular targets, where primary and secondary structures as well as putatively common chemical mechanisms are conserved.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Antiparasitic Agents , Guanine/metabolism , Guanosine Monophosphate , Humans , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Inosine Monophosphate , Isoenzymes , Purines/metabolism , Purines/pharmacology
6.
Bioorg Med Chem ; 74: 117038, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36209571

ABSTRACT

Phosphate groups play essential roles in biological processes, including retention inside biological membranes. Phosphodiesters link nucleic acids, and the reversible transfer of phosphate groups is essential in energy metabolism and cell-signalling processes. Phosphorylated metabolic intermediates are known targets for metabolic and disease-related disorders, and the enzymes involved in these pathways recognize phosphate groups in their catalytic sites. Therapeutics that target these enzymes can require charged (ionic) entities to capture the binding energy of ionic substrates. Such compounds are not cell-permeable and require pro-drug strategies for efficacy as therapeutics. Protozoan parasites such as Plasmodium and Trypanosoma spp. are unable to synthesise purines de novo and rely on the salvage of purines from the host cell to synthesise free purine bases. Purine phosphoribosyltransfereases (PPRTases) play a crucial role for purine salvage and are potential target for drug development. Here we present attempts to design inhibitors of PPRTases that are non-ionic and show affinity for the nucleotide 5'-phosphate binding site. Inhibitor design was based on known potent ionic inhibitors, reported phosphate mimics and computational modelling studies.


Subject(s)
Parasites , Plasmodium , Animals , Phosphates , Purines/pharmacology , Purines/metabolism , Hypoxanthine Phosphoribosyltransferase
7.
Biochemistry ; 60(24): 1933-1946, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34077175

ABSTRACT

Helicobacter pylori is a Gram-negative bacterium that is responsible for gastric and duodenal ulcers. H. pylori uses the unusual mqn pathway with aminofutalosine (AFL) as an intermediate for menaquinone biosynthesis. Previous reports indicate that hydrolysis of AFL by 5'-methylthioadenosine nucleosidase (HpMTAN) is the direct path for producing downstream metabolites in the mqn pathway. However, genomic analysis indicates jhp0252 is a candidate for encoding AFL deaminase (AFLDA), an activity for deaminating aminofutolasine. The product, futalosine, is not a known substrate for bacterial MTANs. Recombinant jhp0252 was expressed and characterized as an AFL deaminase (HpAFLDA). Its catalytic specificity includes AFL, 5'-methylthioadenosine, 5'-deoxyadenosine, adenosine, and S-adenosylhomocysteine. The kcat/Km value for AFL is 6.8 × 104 M-1 s-1, 26-fold greater than that for adenosine. 5'-Methylthiocoformycin (MTCF) is a slow-onset inhibitor for HpAFLDA and demonstrated inhibitory effects on H. pylori growth. Supplementation with futalosine partially restored H. pylori growth under MTCF treatment, suggesting AFL deamination is significant for cell growth. The crystal structures of apo-HpAFLDA and with MTCF at the catalytic sites show a catalytic site Zn2+ or Fe2+ as the water-activating group. With bound MTCF, the metal ion is 2.0 Å from the sp3 hydroxyl group of the transition state analogue. Metabolomics analysis revealed that HpAFLDA has intracellular activity and is inhibited by MTCF. The mqn pathway in H. pylori bifurcates at aminofutalosine with HpMTAN producing adenine and depurinated futalosine and HpAFLDA producing futalosine. Inhibition of cellular HpMTAN or HpAFLDA decreased the cellular content of menaquinone-6, supporting roles for both enzymes in the pathway.


Subject(s)
Helicobacter pylori/metabolism , Nucleosides/metabolism , Vitamin K 2/metabolism , Catalytic Domain , Crystallography, X-Ray/methods , Deoxyadenosines , Helicobacter pylori/chemistry , Helicobacter pylori/enzymology , Models, Molecular , N-Glycosyl Hydrolases/chemistry , N-Glycosyl Hydrolases/metabolism , Nucleosides/chemistry , Purine-Nucleoside Phosphorylase/chemistry , Substrate Specificity , Thionucleosides , Vitamin K 2/analogs & derivatives
8.
Biochemistry ; 59(7): 831-835, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32022543

ABSTRACT

Transition state analogue inhibitor design (TSID) and fragment-based drug design (FBDD) are drug design approaches typically used independently. Methylthio-DADMe-Immucillin-A (MTDIA) is a tight-binding transition state analogue of bacterial 5'-methylthioadenosine nucleosidases (MTANs). Previously, Salmonella enterica MTAN structures were found to bind MTDIA and ethylene glycol fragments, but MTDIA modified to contain similar fragments did not enhance affinity. Seventy-five published MTAN structures were analyzed, and co-crystallization fragments were found that might enhance the binding of MTDIA to other bacterial MTANs through contacts external to MTDIA binding. The fragment-modified MTDIAs were tested with Helicobacter pylori MTAN and Staphylococcus aureus MTANs (HpMTAN and SaMTAN) as test cases to explore inhibitor optimization by potential contacts beyond the transition state contacts. Replacement of a methyl group with a 2'-ethoxyethanol group in MTDIA improved the dissociation constant 14-fold (0.09 nM vs 1.25 nM) for HpMTAN and 81-fold for SaMTAN (0.096 nM vs 7.8 nM). TSID combined with FBDD can be useful in enhancing already powerful inhibitors.


Subject(s)
Adenine/analogs & derivatives , Bacterial Proteins/metabolism , Enzyme Inhibitors/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/metabolism , Adenine/chemistry , Adenine/metabolism , Bacteria/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Catalytic Domain , Enzyme Inhibitors/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Protein Binding , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/chemistry , Pyrrolidines/chemistry
9.
Org Biomol Chem ; 18(25): 4728-4733, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32531013

ABSTRACT

Late oxidation of hexose based building blocks or the use of uronic acid containing building blocks are two complementary strategies in the synthesis of glycosaminoglycans, the latter simplifiying the later stages of the process. Here we report the synthesis and evaluation of various disaccharide donors-uronic acids and their pyranose equivalents-for the synthesis of heparan sulfate, using an established protective group strategy. Hexose based "imidate" type donors perform well in the studied glycosylations, while their corresponding uronate esters fall short; a uronate ester thioglycoside performs equal to, if not better than, a hexose thioglycoside equivalent.

10.
Proc Natl Acad Sci U S A ; 114(29): 7617-7622, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28679637

ABSTRACT

Isocitrate lyase (ICL, types 1 and 2) is the first enzyme of the glyoxylate shunt, an essential pathway for Mycobacterium tuberculosis (Mtb) during the persistent phase of human TB infection. Here, we report 2-vinyl-d-isocitrate (2-VIC) as a mechanism-based inactivator of Mtb ICL1 and ICL2. The enzyme-catalyzed retro-aldol cleavage of 2-VIC unmasks a Michael substrate, 2-vinylglyoxylate, which then forms a slowly reversible, covalent adduct with the thiolate form of active-site Cys191 2-VIC displayed kinetic properties consistent with covalent, mechanism-based inactivation of ICL1 and ICL2 with high efficiency (partition ratio, <1). Analysis of a complex of ICL1:2-VIC by electrospray ionization mass spectrometry and X-ray crystallography confirmed the formation of the predicted covalent S-homopyruvoyl adduct of the active-site Cys191.


Subject(s)
Bacterial Proteins/genetics , Isocitrate Lyase/genetics , Isocitrates/chemistry , Mycobacterium tuberculosis/enzymology , Tuberculosis/drug therapy , Bacterial Proteins/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Glyoxylates/chemistry , Humans , Isocitrate Lyase/antagonists & inhibitors , Ligands , Malates/chemistry , Microscopy, Fluorescence , Molecular Docking Simulation , Spectrometry, Mass, Electrospray Ionization , Succinic Acid/chemistry , Sulfhydryl Compounds/chemistry , Tuberculosis/microbiology , Tuberculosis/prevention & control
11.
Org Biomol Chem ; 17(7): 1817-1821, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30543331

ABSTRACT

Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography.

12.
Biochemistry ; 56(38): 5090-5098, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28836767

ABSTRACT

Mycobacterium tuberculosis 5'-deoxyadenosine/5'-methylthioadenosine nucleosidase (Rv0091) catalyzes the N-riboside hydrolysis of its substrates 5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'-dAdo). 5'-dAdo is the preferred substrate, a product of radical S-adenosylmethionine-dependent enzyme reactions. Rv0091 is characterized by a ribocation-like transition state, with low N-ribosidic bond order, an N7-protonated adenine leaving group, and an activated but weakly bonded water nucleophile. DADMe-Immucillins incorporating 5'-substituents of the substrates 5'-dAdo and MTA were synthesized and characterized as inhibitors of Rv0091. 5'-Deoxy-DADMe-Immucillin-A was the most potent among the 5'-dAdo transition state analogues with a dissociation constant of 640 pM. Among the 5'-thio substituents, hexylthio-DADMe-Immucillin-A was the best inhibitor at 87 pM. The specificity of Rv0091 for the Immucillin transition state analogues differs from those of other bacterial homologues because of an altered hydrophobic tunnel accepting the 5'-substituents. Inhibitors of Rv0091 had weak cell growth effects on M. tuberculosis or Mycobacterium smegmatis but were lethal toward Helicobacter pylori, where the 5'-methylthioadenosine nucleosidase is essential in menaquinone biosynthesis. We propose that Rv0091 plays a role in 5'-deoxyadenosine recycling but is not essential for growth in these Mycobacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chemistry Techniques, Synthetic , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Helicobacter pylori/drug effects , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Structural Homology, Protein , Structure-Activity Relationship
13.
Anal Chem ; 88(23): 11860-11867, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27779859

ABSTRACT

5'-Methylthioadenosine phosphorylase (MTAP) and 5'-methylthioadenosine nucleosidase (MTAN) catalyze the phosphorolysis and hydrolysis of 5'-methylthioadenosine (MTA), respectively. Both enzymes have low KM values for their substrates. Kinetic assays for these enzymes are challenging, as the ultraviolet absorbance spectra for reactant MTA and product adenine are similar. We report a new assay using 2-amino-5'-methylthioadenosine (2AMTA) as an alternative substrate for MTAP and MTAN enzymes. Hydrolysis or phosphorolysis of 2AMTA forms 2,6-diaminopurine, a fluorescent and easily quantitated product. We kinetically characterize 2AMTA with human MTAP, bacterial MTANs and use 2,6-diaminopurine as a fluorescent substrate for yeast adenine phosphoribosyltransferase. 2AMTA was used as the substrate to kinetically characterize the dissociation constants for three-transition-state analogue inhibitors of MTAP and MTAN. Kinetic values obtained from continuous fluorescent assays with MTA were in good agreement with previously measured literature values, but gave smaller experimental errors. Chemical synthesis from ribose and 2,6-dichloropurine provided crystalline 2AMTA as the oxalate salt. Chemo-enzymatic synthesis from ribose and 2,6-diaminopurine produced 2-amino-S-adenosylmethionine for hydrolytic conversion to 2AMTA. Interaction of 2AMTA with human MTAP was also characterized by pre-steady-state kinetics and by analysis of the crystal structure in a complex with sulfate as a catalytically inert analogue of phosphate. This assay is suitable for inhibitor screening by detection of fluorescent product, for quantitative analysis of hits by rapid and accurate measurement of inhibition constants in continuous assays, and pre-steady-state kinetic analysis of the target enzymes.


Subject(s)
Adenine/metabolism , Enzyme Assays/methods , Fluorescence , 2-Aminopurine/analogs & derivatives , 2-Aminopurine/chemistry , 2-Aminopurine/metabolism , Adenine/analogs & derivatives , Adenine/analysis , Adenine Phosphoribosyltransferase/metabolism , Humans , Kinetics , Saccharomyces cerevisiae/enzymology , Substrate Specificity
14.
J Am Chem Soc ; 137(45): 14275-80, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26494017

ABSTRACT

Helicobacter pylori is a Gram-negative bacterium that colonizes the gut of over 50% of the world's population. It is responsible for most peptic ulcers and is an important risk factor for gastric cancer. Antibiotic treatment for H. pylori infections is challenging as drug resistance has developed to antibiotics with traditional mechanisms of action. H. pylori uses an unusual pathway for menaquinone biosynthesis with 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzing an essential step. We validated MTAN as a target with a transition-state analogue of the enzyme [Wang, S.; Haapalainen, A. M.; Yan, F.; et al. Biochemistry 2012, 51, 6892-6894]. MTAN inhibitors will only be useful drug candidates if they can both include tight binding to the MTAN target and have the ability to penetrate the complex cell membrane found in Gram-negative H. pylori. Here we explore structural scaffolds for MTAN inhibition and for growth inhibition of cultured H. pylori. Sixteen analogues reported here are transition-state analogues of H. pylori MTAN with dissociation constants of 50 pM or below. Ten of these prevent growth of the H. pylori with IC90 values below 0.01 µg/mL. These remarkable compounds meet the criteria for potent inhibition and cell penetration. As a consequence, 10 new H. pylori antibiotic candidates are identified, all of which prevent H. pylori growth at concentrations 16-2000-fold lower than the five antibiotics, amoxicillin, metronidazole, levofloxacin, tetracyclin, and clarithromycin, commonly used to treat H. pylori infections. X-ray crystal structures of MTAN cocrystallized with several inhibitors show them to bind in the active site making interactions consistent with transition-state analogues.


Subject(s)
Anti-Bacterial Agents/pharmacology , Helicobacter pylori/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Structure-Activity Relationship
15.
Bioorg Med Chem ; 23(17): 5326-33, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26260335

ABSTRACT

MTDIA is a picomolar transition state analogue inhibitor of human methylthioadenosine phosphorylase and a femtomolar inhibitor of Escherichia coli methylthioadenosine nucleosidase. MTDIA has proven to be a non-toxic, orally available pre-clinical drug candidate with remarkable anti-tumour activity against a variety of human cancers in mouse xenografts. The structurally similar compound MTDIH is a potent inhibitor of human and malarial purine nucleoside phosphorylase (PNP) as well as the newly discovered enzyme, methylthioinosine phosphorylase, isolated from Pseudomonas aeruginosa. Since the enantiomers of some pharmaceuticals have revealed surprising biological activities, the enantiomers of MTDIH and MTDIA, compounds 1 and 2, respectively, were prepared and their enzyme binding properties studied. Despite binding less tightly to their target enzymes than their enantiomers compounds 1 and 2 are nanomolar inhibitors.


Subject(s)
Adenine/analogs & derivatives , Escherichia coli/enzymology , Plasmodium falciparum/enzymology , Pseudomonas aeruginosa/enzymology , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Adenine/chemistry , Adenine/pharmacology , Drug Discovery , Escherichia coli/drug effects , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Plasmodium falciparum/drug effects , Protein Binding , Pseudomonas aeruginosa/drug effects , Purine-Nucleoside Phosphorylase/metabolism , Stereoisomerism
16.
Eukaryot Cell ; 13(5): 572-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24585883

ABSTRACT

The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5'-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5' groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5'-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2'-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5'-methylthioinosine and similarly 5'-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa.


Subject(s)
Enzyme Inhibitors/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Toxoplasma/enzymology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Kinetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Purine Nucleosides/chemistry , Purine Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/genetics , Pyrimidinones/chemistry , Substrate Specificity , Toxoplasma/chemistry , Toxoplasma/genetics
17.
Eur J Mass Spectrom (Chichester) ; 21(3): 245-54, 2015.
Article in English | MEDLINE | ID: mdl-26307704

ABSTRACT

Here we report ion mobility mass spectrometry (IMMS) separation and tandem mass spectrometry (MS(2)) sequencing methods used to analyze and differentiate six synthetically produced heparin/heparan sulfate (HS)-like octasaccharide (dp8) isomeric structures. These structures are isomeric with regard to either glucuronic acid (GlcA) or iduronic acid (IdoA) residues at various positions. IMMS analysis showed that a fully GlcA structure exhibited a more compact conformation, whereas the fully IdoA structure was more extended. Interestingly, the change from IdoA to GlcA in specific locations resulted in strong conformational distortions. MS(2) of the six isomers showed very different spectra with unique sets of diagnostic product ions. Analysis of MS(2) product ion spectra suggests that the GlcA group correlated with the formation of a glycosidic product ion under lower energy conditions. This resulted in an earlier product ion formation and more intense product ions. Importantly, this knowledge enabled a complete sequencing of the positions of GlcA and IdoA in each of the four positions located in each unique dp8 structure.


Subject(s)
Glucuronic Acid/chemistry , Heparitin Sulfate/chemistry , Iduronic Acid/chemistry , Polysaccharides/chemistry , Sequence Analysis/methods , Spectrometry, Mass, Electrospray Ionization/methods , Binding Sites , Heparitin Sulfate/analysis , Isomerism
18.
Angew Chem Int Ed Engl ; 54(9): 2718-23, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25640820

ABSTRACT

Heparan sulfate (HS) is a highly sulfated glycosaminoglycan with a variety of critical functions in cell signaling and regulation. HS oligosaccharides can mimic or interfere with HS functions in biological systems; however, their exploitation has been hindered by the complexity of their synthesis. Polyvalent displays of small specific HS structures on dendritic cores offer more accessible constructs with potential advantages as therapeutics, but the synthesis of single-entity HS polyvalent compounds has not previously been described. Herein we report the synthesis of a novel targeted library of single-entity glycomimetic clusters capped with varied HS saccharides. They have the ability to mimic longer natural HS saccharides in their inhibition of the Alzheimer's disease (AD) protease BACE-1. We have identified several single-entity HS clusters with IC50 values in the low-nanomolar range. These HS clusters are drug leads for AD and offer a novel framework for the manipulation of heparan sulfate-protein interactions in general.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Biomimetic Materials/pharmacology , Heparitin Sulfate/pharmacology , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Carbohydrate Conformation , Dose-Response Relationship, Drug , Heparitin Sulfate/chemical synthesis , Heparitin Sulfate/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
19.
J Biol Chem ; 288(48): 34746-54, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24158442

ABSTRACT

The survival and proliferation of Plasmodium falciparum parasites and human cancer cells require de novo pyrimidine synthesis to supply RNA and DNA precursors. Orotate phosphoribosyltransferase (OPRT) is an indispensible component in this metabolic pathway and is a target for antimalarials and antitumor drugs. P. falciparum (Pf) and Homo sapiens (Hs) OPRTs are characterized by highly dissociative transition states with ribocation character. On the basis of the geometrical and electrostatic features of the PfOPRT and HsOPRT transition states, analogues were designed, synthesized, and tested as inhibitors. Iminoribitol mimics of the ribocation transition state in linkage to pyrimidine mimics using methylene or ethylene linkers gave dissociation constants (Kd) as low as 80 nM. Inhibitors with pyrrolidine groups as ribocation mimics displayed slightly weaker binding affinities for OPRTs. Interestingly, p-nitrophenyl riboside 5'-phosphate bound to OPRTs with Kd values near 40 nM. Analogues designed with a C5-pyrimidine carbon-carbon bond to ribocation mimics gave Kd values in the range of 80-500 nM. Acyclic inhibitors with achiral serinol groups as the ribocation mimics also displayed nanomolar inhibition against OPRTs. In comparison with the nucleoside derivatives, inhibition constants of their corresponding 5'-phosphorylated transition state analogues are largely unchanged, an unusual property for a nucleotide-binding site. In silico docking of the best inhibitor into the HsOPRT active site supported an extensive hydrogen bond network associated with the tight binding affinity. These OPRT transition state analogues identify crucial components of potent inhibitors targeting OPRT enzymes. Despite their tight binding to the targets, the inhibitors did not kill cultured P. falciparum.


Subject(s)
Malaria/enzymology , Metabolic Networks and Pathways , Orotate Phosphoribosyltransferase/chemistry , Plasmodium falciparum/chemistry , Pyrimidines/biosynthesis , Antimalarials/chemistry , Binding Sites , Humans , Hydrogen Bonding , Kinetics , Malaria/drug therapy , Malaria/parasitology , Nucleosides , Orotate Phosphoribosyltransferase/genetics , Orotate Phosphoribosyltransferase/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Protein Conformation , Pyrimidines/chemistry , Pyrrolidines/pharmacology , Substrate Specificity
20.
ACS Infect Dis ; 10(3): 928-937, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38334357

ABSTRACT

Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.


Subject(s)
Bacterial Toxins , Boron Compounds , Clostridioides difficile , Imino Pyranoses , Animals , Mice , Bacterial Toxins/genetics , Enterotoxins , Clostridioides difficile/genetics , Bacterial Proteins/genetics , Glucosyltransferases/genetics , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL