Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Am J Hum Genet ; 111(6): 1061-1083, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38723632

ABSTRACT

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Transcriptome , Risk Factors , Genomics/methods , Case-Control Studies , Multiomics
2.
Am J Hum Genet ; 109(1): 116-135, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34965383

ABSTRACT

The high-grade serous ovarian cancer (HGSOC) risk locus at chromosome 1p34.3 resides within a frequently amplified genomic region signifying the presence of an oncogene. Here, we integrate in silico variant-to-function analysis with functional studies to characterize the oncogenic potential of candidate genes in the 1p34.3 locus. Fine mapping of genome-wide association statistics identified candidate causal SNPs local to H3K27ac-demarcated enhancer regions that exhibit allele-specific binding for CTCF in HGSOC and normal fallopian tube secretory epithelium cells (FTSECs). SNP risk associations colocalized with eQTL for six genes (DNALI1, GNL2, RSPO1, SNIP1, MEAF6, and LINC01137) that are more highly expressed in carriers of the risk allele, and three (DNALI1, GNL2, and RSPO1) were upregulated in HGSOC compared to normal ovarian surface epithelium cells and/or FTSECs. Increased expression of GNL2 and MEAF6 was associated with shorter survival in HGSOC with 1p34.3 amplifications. Despite its activation of ß-catenin signaling, RSPO1 overexpression exerted no effects on proliferation or colony formation in our study of ovarian cancer and FTSECs. Instead, GNL2, MEAF6, and SNIP1 silencing impaired in vitro ovarian cancer cell growth. Additionally, GNL2 silencing diminished xenograft tumor formation, whereas overexpression stimulated proliferation and colony formation in FTSECs. GNL2 influences 60S ribosomal subunit maturation and global protein synthesis in ovarian cancer and FTSECs, providing a potential mechanism of how GNL2 upregulation might promote ovarian cancer development and mediate genetic susceptibility of HGSOC.


Subject(s)
Chromosomes, Human, Pair 1 , Cystadenocarcinoma, Serous/genetics , GTP-Binding Proteins/genetics , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Quantitative Trait Loci , Alleles , Alternative Splicing , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Chromatin Immunoprecipitation Sequencing , Cystadenocarcinoma, Serous/pathology , DNA Copy Number Variations , Disease Models, Animal , Enhancer Elements, Genetic , Female , GTP-Binding Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Association Studies , Genome-Wide Association Study , Heterografts , Humans , Mice , Neoplasm Grading , Odds Ratio , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Prognosis , Transcriptome , White People
3.
Am J Hum Genet ; 107(4): 622-635, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32946763

ABSTRACT

Quantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome-wide association studies have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, where they likely function through interaction with gene regulatory elements. In this study we first estimated the heritability explained by known common low penetrance risk alleles for EOC. The narrow sense heritability (hg2) of EOC overall and high-grade serous ovarian cancer (HGSOCs) were estimated to be 5%-6%. Partitioned SNP heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap Epigenomics and ENCODE, and from H3K27Ac ChIP-seq data generated in 26 ovarian cancer and precursor-related cell and tissue types. We identified significant enrichment of risk single-nucleotide polymorphisms (SNPs) in active regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that are predicted to significantly break transcription factor (TF) motifs. The most frequently broken motif was REST (p value = 0.0028), which has been reported as both a tumor suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic data improve interpretation of EOC risk variants and shed light on likely cells of origin.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Co-Repressor Proteins/genetics , Cystadenocarcinoma, Serous/genetics , Enhancer Elements, Genetic , Histones/genetics , Nerve Tissue Proteins/genetics , Ovarian Neoplasms/genetics , Alleles , Binding Sites , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/pathology , Chromosome Mapping , Co-Repressor Proteins/metabolism , Cystadenocarcinoma, Serous/diagnosis , Cystadenocarcinoma, Serous/pathology , Female , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , Histones/metabolism , Humans , Inheritance Patterns , Nerve Tissue Proteins/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Penetrance , Polymorphism, Single Nucleotide , Risk
4.
Nature ; 551(7678): 92-94, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29059683

ABSTRACT

Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.


Subject(s)
Breast Neoplasms/genetics , Genetic Loci , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Asia/ethnology , Asian People/genetics , Binding Sites/genetics , Breast Neoplasms/diagnosis , Computer Simulation , Europe/ethnology , Female , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Regulatory Sequences, Nucleic Acid , Risk Assessment , Transcription Factors/metabolism , White People/genetics
5.
J Med Genet ; 59(7): 632-643, 2022 07.
Article in English | MEDLINE | ID: mdl-34844974

ABSTRACT

BACKGROUND: Epithelial tubo-ovarian cancer (EOC) has high mortality partly due to late diagnosis. Prevention is available but may be associated with adverse effects. A multifactorial risk model based on known genetic and epidemiological risk factors (RFs) for EOC can help identify women at higher risk who could benefit from targeted screening and prevention. METHODS: We developed a multifactorial EOC risk model for women of European ancestry incorporating the effects of pathogenic variants (PVs) in BRCA1, BRCA2, RAD51C, RAD51D and BRIP1, a Polygenic Risk Score (PRS) of arbitrary size, the effects of RFs and explicit family history (FH) using a synthetic model approach. The PRS, PV and RFs were assumed to act multiplicatively. RESULTS: Based on a currently available PRS for EOC that explains 5% of the EOC polygenic variance, the estimated lifetime risks under the multifactorial model in the general population vary from 0.5% to 4.6% for the first to 99th percentiles of the EOC risk distribution. The corresponding range for women with an affected first-degree relative is 1.9%-10.3%. Based on the combined risk distribution, 33% of RAD51D PV carriers are expected to have a lifetime EOC risk of less than 10%. RFs provided the widest distribution, followed by the PRS. In an independent partial model validation, absolute and relative 5-year risks were well calibrated in quintiles of predicted risk. CONCLUSION: This multifactorial risk model can facilitate stratification, in particular among women with FH of cancer and/or moderate-risk and high-risk PVs. The model is available via the CanRisk Tool (www.canrisk.org).


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/epidemiology , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Risk Factors
6.
Genet Epidemiol ; 45(3): 237-248, 2021 04.
Article in English | MEDLINE | ID: mdl-33020983

ABSTRACT

The intensities from genotyping array data can be used to detect copy number variants (CNVs) but a high level of noise in the data and overlap between different copy-number intensity distributions produces unreliable calls, particularly when only a few probes are covered by the CNV. We present a novel pipeline (CamCNV) with a series of steps to reduce noise and detect more reliably CNVs covering as few as three probes. The pipeline aims to detect rare CNVs (below 1% frequency) for association tests in large cohorts. The method uses the information from all samples to convert intensities to z-scores, thus adjusting for variance between probes. We tested the sensitivity of our pipeline by looking for known CNVs from the 1000 Genomes Project in our genotyping of 1000 Genomes samples. We also compared the CNV calls for 1661 pairs of genotyped replicate samples. At the chosen mean z-score cut-off, sensitivity to detect the 1000 Genomes CNVs was approximately 85% for deletions and 65% for duplications. From the replicates, we estimate the false discovery rate is controlled at ∼10% for deletions (falling to below 3% with more than five probes) and ∼28% for duplications. The pipeline demonstrates improved sensitivity when compared to calling with PennCNV, particularly for short deletions covering only a few probes. For each called CNV, the mean z-score is a useful metric for controlling the false discovery rate.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Genotype , Humans , Reproducibility of Results
7.
Am J Hum Genet ; 104(1): 21-34, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30554720

ABSTRACT

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Female , Humans , Medical History Taking , Middle Aged , Polymorphism, Single Nucleotide/genetics , Receptors, Estrogen/metabolism , Reproducibility of Results , Risk Assessment
8.
J Med Genet ; 58(5): 305-313, 2021 05.
Article in English | MEDLINE | ID: mdl-32546565

ABSTRACT

PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling.


Subject(s)
Fanconi Anemia Complementation Group N Protein/genetics , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Case-Control Studies , Female , Genetic Variation , Humans , Risk Assessment
9.
Breast Cancer Res ; 23(1): 94, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593009

ABSTRACT

BACKGROUND: Advancements in cancer therapeutics have resulted in increases in cancer-related survival; however, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratification may help address this clinical dilemma. This study is the first to assess the association between a coronary artery disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors. METHODS: We utilized the Studies in Epidemiology and Research in Cancer Heredity prospective cohort involving 12,413 women with breast cancer with genotype information and without a baseline history of cardiovascular disease. Cause-specific hazard ratios for association of the polygenic risk score and incident coronary artery disease (CAD) were obtained using left-truncated Cox regression adjusting for age, genotype array, conventional risk factors such as smoking and body mass index, as well as other sociodemographic, lifestyle, and medical variables. RESULTS: Over a median follow-up of 10.3 years (IQR: 16.8) years, 750 incident fatal or non-fatal coronary artery events were recorded. A 1 standard deviation higher polygenic risk score was associated with an adjusted hazard ratio of 1.33 (95% CI 1.20, 1.47) for incident CAD. CONCLUSIONS: This study provides evidence that a coronary artery disease-specific polygenic risk score can risk-stratify breast cancer survivors independently of other established cardiovascular risk factors.


Subject(s)
Breast Neoplasms/epidemiology , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Breast Neoplasms/therapy , Cancer Survivors , Female , Genome-Wide Association Study , Genomics , Genotype , Humans , Incidence , Middle Aged , Multifactorial Inheritance , Proportional Hazards Models , Prospective Studies , Risk Factors , United Kingdom/epidemiology
10.
Int J Cancer ; 146(11): 2987-2998, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31469419

ABSTRACT

Women of African ancestry have lower incidence of epithelial ovarian cancer (EOC) yet worse survival compared to women of European ancestry. We conducted a genome-wide association study in African ancestry women with 755 EOC cases, including 537 high-grade serous ovarian carcinomas (HGSOC) and 1,235 controls. We identified four novel loci with suggestive evidence of association with EOC (p < 1 × 10-6 ), including rs4525119 (intronic to AKR1C3), rs7643459 (intronic to LOC101927394), rs4286604 (12 kb 3' of UGT2A2) and rs142091544 (5 kb 5' of WWC1). For HGSOC, we identified six loci with suggestive evidence of association including rs37792 (132 kb 5' of follistatin [FST]), rs57403204 (81 kb 3' of MAGEC1), rs79079890 (LOC105376360 intronic), rs66459581 (5 kb 5' of PRPSAP1), rs116046250 (GABRG3 intronic) and rs192876988 (32 kb 3' of GK2). Among the identified variants, two are near genes known to regulate hormones and diseases of the ovary (AKR1C3 and FST), and two are linked to cancer (AKR1C3 and MAGEC1). In follow-up studies of the 10 identified variants, the GK2 region SNP, rs192876988, showed an inverse association with EOC in European ancestry women (p = 0.002), increased risk of ER positive breast cancer in African ancestry women (p = 0.027) and decreased expression of GK2 in HGSOC tissue from African ancestry women (p = 0.004). A European ancestry-derived polygenic risk score showed positive associations with EOC and HGSOC in women of African ancestry suggesting shared genetic architecture. Our investigation presents evidence of variants for EOC shared among European and African ancestry women and identifies novel EOC risk loci in women of African ancestry.


Subject(s)
Black People/genetics , Black or African American/genetics , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial/genetics , White People/genetics , Aldo-Keto Reductase Family 1 Member C3/genetics , Antigens, Neoplasm/genetics , Breast Neoplasms/epidemiology , Carcinoma, Ovarian Epithelial/epidemiology , Female , Follistatin/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide/genetics , United States/epidemiology
11.
Int J Cancer ; 144(9): 2192-2205, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30499236

ABSTRACT

As a follow-up to genome-wide association analysis of common variants associated with ovarian carcinoma (cancer), our study considers seven well-known ovarian cancer risk factors and their interactions with 28 genome-wide significant common genetic variants. The interaction analyses were based on data from 9971 ovarian cancer cases and 15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for multiplicative interaction and for relative excess risk due to additive interaction were used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) use (ever vs. never) and rs13255292 (p value = 3.48 × 10-4 ). Among women with the TT genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI = 0.46-0.60) compared to 0.71 (95%CI = 0.66-0.77) for women with the CC genotype. When stratified by duration of OCP use, women with 1-5 years of OCP use exhibited differential protective benefit across genotypes. However, no interaction on either the multiplicative or additive scale was found to be statistically significant after multiple testing correction. The results suggest that OCP use may offer increased benefit for women who are carriers of the T allele in rs13255292. On the other hand, for women carrying the C allele in this variant, longer (5+ years) use of OCP may reduce the impact of carrying the risk allele of this SNP. Replication of this finding is needed. The study presents a comprehensive analytic framework for conducting gene-environment analysis in ovarian cancer.


Subject(s)
Environmental Exposure/adverse effects , Gene-Environment Interaction , Genetic Predisposition to Disease/genetics , Ovarian Neoplasms/etiology , Ovarian Neoplasms/genetics , Case-Control Studies , Contraceptives, Oral, Hormonal , Environment , Female , Genome-Wide Association Study/methods , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Risk
12.
Gynecol Oncol ; 153(2): 343-355, 2019 05.
Article in English | MEDLINE | ID: mdl-30898391

ABSTRACT

OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women. METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations. RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10-9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 4.3 × 10-9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC risk (OR = 1.27, P = 9.0 × 10-8). Overall EOC risk was associated with rs10260419 at chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10-7) and rs74917072 at chromosome 2q37.3 (OR = 1.25, P = 4.7 × 10-7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10-7). CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Asian People/genetics , Base Sequence , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
J Med Genet ; 55(8): 546-554, 2018 08.
Article in English | MEDLINE | ID: mdl-29730597

ABSTRACT

BACKGROUND: Genome-wide association studies have identified >30 common SNPs associated with epithelial ovarian cancer (EOC). We evaluated the combined effects of EOC susceptibility SNPs on predicting EOC risk in an independent prospective cohort study. METHODS: We genotyped ovarian cancer susceptibility single nucleotide polymorphisms (SNPs) in a nested case-control study (750 cases and 1428 controls) from the UK Collaborative Trial of Ovarian Cancer Screening trial. Polygenic risk scores (PRSs) were constructed and their associations with EOC risk were evaluated using logistic regression. The absolute risk of developing ovarian cancer by PRS percentiles was calculated. RESULTS: The association between serous PRS and serous EOC (OR 1.43, 95% CI 1.29 to 1.58, p=1.3×10-11) was stronger than the association between overall PRS and overall EOC risk (OR 1.32, 95% CI 1.21 to 1.45, p=5.4×10-10). Women in the top fifth percentile of the PRS had a 3.4-fold increased EOC risk compared with women in the bottom 5% of the PRS, with the absolute EOC risk by age 80 being 2.9% and 0.9%, respectively, for the two groups of women in the population. CONCLUSION: PRSs can be used to predict future risk of developing ovarian cancer for women in the general population. Incorporation of PRSs into risk prediction models for EOC could inform clinical decision-making and health management.


Subject(s)
Biomarkers, Tumor , Genetic Predisposition to Disease , Multifactorial Inheritance , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Risk Assessment , Risk Factors
14.
Am J Epidemiol ; 187(2): 366-377, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28633381

ABSTRACT

There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium.


Subject(s)
Case-Control Studies , Epidemiologic Research Design , Gene-Environment Interaction , Bayes Theorem , Bias , Computer Simulation , Humans , Regression Analysis , Retrospective Studies
15.
Nature ; 490(7419): 267-72, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22982992

ABSTRACT

There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ∼170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ∼0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.


Subject(s)
Body Mass Index , Genetic Variation , Phenotype , Proteins/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Body Height/genetics , Co-Repressor Proteins , Female , Genome-Wide Association Study , Humans , Male , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Repressor Proteins/genetics
16.
Hum Mol Genet ; 24(13): 3595-607, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25804953

ABSTRACT

Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.


Subject(s)
Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Chromatin/genetics , Chromatin/metabolism , Female , Genome-Wide Association Study , Histones/genetics , Histones/metabolism , Humans , Organ Specificity , Ovarian Neoplasms/metabolism , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid
17.
Hum Mol Genet ; 24(5): 1478-92, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25378557

ABSTRACT

Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.


Subject(s)
Chromosome Mapping , Endometrial Neoplasms/genetics , Genetic Loci , Hepatocyte Nuclear Factor 1-beta/genetics , Alleles , Case-Control Studies , Cell Line, Tumor , Computational Biology , Databases, Genetic , Epigenesis, Genetic , Female , Genetic Variation , Genome-Wide Association Study , Genotype , Haplotypes , Hepatocyte Nuclear Factor 1-beta/metabolism , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , White People/genetics
18.
Br J Cancer ; 116(4): 524-535, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28103614

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. METHODS: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). RESULTS: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10-5 (including six with P<5 × 10-8). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. CONCLUSIONS: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cystadenocarcinoma, Serous/genetics , Gene Amplification , Genetic Loci , Genetic Predisposition to Disease , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial , Case-Control Studies , Cell Line, Tumor , Cystadenocarcinoma, Serous/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Loci/genetics , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Microarray Analysis , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide
19.
Genet Epidemiol ; 39(8): 689-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26399219

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Genetic Predisposition to Disease , Neoplasms, Glandular and Epithelial/epidemiology , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Carcinoma, Ovarian Epithelial , Female , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Odds Ratio , Risk , White People
20.
Hum Mol Genet ; 23(17): 4703-9, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24728189

ABSTRACT

The aim of this study was to estimate the contribution of deleterious mutations in BRCA1, BRCA2, MLH1, MSH2, MSH6 and PMS2 to invasive epithelial ovarian cancer (EOC) in the population. The coding sequence and splice site boundaries of all six genes were amplified in germline DNA from 2240 invasive EOC cases and 1535 controls. Barcoded fragment libraries were sequenced using the Illumina GAII or HiSeq and sequence data for each subject de-multiplexed prior to interpretation. GATK and Annovar were used for variant detection and annotation. After quality control 2222 cases (99.2%) and 1528 controls (99.5%) were included in the final analysis. We identified 193 EOC cases (8.7%) carrying a deleterious mutation in at least one gene compared with 10 controls (0.65%). Mutations were most frequent in BRCA1 and BRCA2, with 84 EOC cases (3.8%) carrying a BRCA1 mutation and 94 EOC cases (4.2%) carrying a BRCA2 mutation. The combined BRCA1 and BRCA2 mutation prevalence was 11% in high-grade serous disease. Seventeen EOC cases carried a mutation in a mismatch repair gene, including 10 MSH6 mutation carriers (0.45%) and 4 MSH2 mutation carriers (0.18%). At least 1 in 10 women with high-grade serous EOC has a BRCA1 or BRCA2 mutation. The development of next generation sequencing technologies enables rapid mutation screening for multiple susceptibility genes at once, suggesting that routine clinical testing of all incidence cases should be considered.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Mismatch Repair/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , Adult , Age of Onset , Aged , Female , Humans , Middle Aged , Mutation, Missense/genetics , Ovarian Neoplasms/pathology , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL