Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS Biol ; 20(7): e3001680, 2022 07.
Article in English | MEDLINE | ID: mdl-35797414

ABSTRACT

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Subject(s)
Research Personnel , Research Report , Humans , Power, Psychological
2.
Cereb Cortex ; 32(1): 76-92, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34289029

ABSTRACT

The parasubiculum (PaS) is located within the parahippocampal region, where it is thought to be involved in the processing of spatial navigational information. It contains a number of functionally specialized neuron types including grid cells, head direction cells, and border cells; and provides input into layer 2 of the medial entorhinal cortex where grid cells are abundantly located. The local circuitry within the PaS remains so far undefined but may provide clues as to the emergence of spatially tuned firing properties of neurons in this region. We used simultaneous patch-clamp recordings to determine the connectivity rates between the 3 major groups of neurons found in the PaS. We find high rates of interconnectivity between the pyramidal class and interneurons, as well as features of pyramid-to-pyramid interactions indicative of a nonrandom network. The microcircuit that we uncover shares both similarities and divergences to those from other parahippocampal regions also involved in spatial navigation.


Subject(s)
Entorhinal Cortex , Spatial Navigation , Action Potentials/physiology , Entorhinal Cortex/physiology , Interneurons/physiology , Neurons/physiology , Parahippocampal Gyrus/physiology , Spatial Navigation/physiology
3.
J Neurosci ; 39(11): 1969-1981, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30630881

ABSTRACT

In cerebellar Purkinje neuron dendrites, the transient depolarization associated with a climbing fiber (CF) EPSP activates voltage-gated Ca2+ channels (VGCCs), voltage-gated K+ channels (VGKCs), and Ca2+-activated SK and BK K+ channels. The resulting membrane potential (Vm) and Ca2+ transients play a fundamental role in dendritic integration and synaptic plasticity of parallel fiber inputs. Here we report a detailed investigation of the kinetics of dendritic Ca2+ and K+ channels activated by CF-EPSPs, based on optical measurements of Vm and Ca2+ transients and on a single-compartment NEURON model reproducing experimental data. We first measured Vm and Ca2+ transients associated with CF-EPSPs at different initial Vm, and we analyzed the changes in the Ca2+ transients produced by the block of each individual VGCCs, of A-type VGKCs and of SK and BK channels. Then, we constructed a model that includes six active ion channels to accurately match experimental signals and extract the physiological kinetics of each channel. We found that two different sets of channels are selectively activated. When the dendrite is hyperpolarized, CF-EPSPs mainly activate T-type VGCCs, SK channels, and A-type VGKCs that limit the transient Vm ∼ <0 mV. In contrast, when the dendrite is depolarized, T-type VGCCs and A-type VGKCs are inactivated and CF-EPSPs activate P/Q-type VGCCs, high-voltage activated VGKCs, and BK channels, leading to Ca2+ spikes. Thus, the potentially activity-dependent regulation of A-type VGKCs, controlling the activation of this second set of channels, is likely to play a crucial role in signal integration and plasticity in Purkinje neuron dendrites.SIGNIFICANCE STATEMENT The climbing fiber synaptic input transiently depolarizes the dendrite of cerebellar Purkinje neurons generating a signal that plays a fundamental role in dendritic integration. This signal is mediated by two types of Ca2+ channels and four types of K+ channels. Thus, understanding the kinetics of all of these channels is crucial for understanding PN function. To obtain this information, we used an innovative strategy that merges ultrafast optical membrane potential and Ca2+ measurements, pharmacological analysis, and computational modeling. We found that, according to the initial membrane potential, the climbing fiber depolarizing transient activates two distinct sets of channels. Moreover, A-type K+ channels limit the activation of P/Q-type Ca2+ channels and associated K+ channels, thus preventing the generation of Ca2+ spikes.


Subject(s)
Calcium Channels/physiology , Dendrites/physiology , Excitatory Postsynaptic Potentials , Potassium Channels, Voltage-Gated/physiology , Purkinje Cells/physiology , Animals , Calcium Channels, L-Type/physiology , Calcium Channels, N-Type/physiology , Calcium Channels, T-Type/physiology , Mice, Inbred C57BL , Models, Neurological , Optical Imaging
4.
Sci Adv ; 10(5): eadj7427, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295164

ABSTRACT

Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.


Subject(s)
Hippocampus , Parvalbumins , Animals , Parvalbumins/metabolism , Hippocampus/metabolism , Long-Term Potentiation/physiology , Signal Transduction , Interneurons/physiology , Neuronal Plasticity/physiology
5.
Neuron ; 111(20): 3154-3175, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37467748

ABSTRACT

One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.


Subject(s)
Hippocampus , Interneurons , Interneurons/physiology , Hippocampus/physiology
6.
Neuron ; 110(12): 1884-1886, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35709692

ABSTRACT

In this issue of Neuron, Szabo et al. uncover a unique subtype of interneurons that is highly active during ripples but largely silent during theta oscillations. The study provides exciting new insights into the regulation and propagation of ripples in CA1 and beyond.


Subject(s)
Interneurons , Pyramidal Cells , Action Potentials/physiology , Hippocampus/physiology , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Theta Rhythm/physiology
7.
Neuroscience ; 489: 34-43, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34843894

ABSTRACT

GABAergic interneurons (INs) are a highly diverse class of neurons in the mammalian brain with a critical role in orchestrating multiple cognitive functions and maintaining the balance of excitation/inhibition across neuronal circuitries. In this perspective, we discuss recent findings regarding the ability of some IN subtypes to integrate incoming inputs in nonlinear ways within their dendritic branches. These recently discovered features may endow the specific INs with advanced computing capabilities, whose breadth and functional contributions remain an open question. Along these lines, we discuss theoretical and experimental evidence regarding the potential role of nonlinear IN dendrites in advancing single neuron computations and contributing to memory formation.


Subject(s)
Dendrites , Interneurons , Animals , Brain , Dendrites/physiology , GABAergic Neurons , Interneurons/physiology , Mammals , Neurons
8.
Neuron ; 110(20): 3374-3388.e8, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36041433

ABSTRACT

Individual memories are often linked so that the recall of one triggers the recall of another. For example, contextual memories acquired close in time can be linked, and this is known to depend on a temporary increase in excitability that drives the overlap between dorsal CA1 (dCA1) hippocampal ensembles that encode the linked memories. Here, we show that locus coeruleus (LC) cells projecting to dCA1 have a key permissive role in contextual memory linking, without affecting contextual memory formation, and that this effect is mediated by dopamine. Additionally, we found that LC-to-dCA1-projecting neurons modulate the excitability of dCA1 neurons and the extent of overlap between dCA1 memory ensembles as well as the stability of coactivity patterns within these ensembles. This discovery of a neuromodulatory system that specifically affects memory linking without affecting memory formation reveals a fundamental separation between the brain mechanisms modulating these two distinct processes.


Subject(s)
Dopamine , Locus Coeruleus , Locus Coeruleus/physiology , Dopamine/physiology , Memory/physiology , Hippocampus/physiology , Neurons/physiology
9.
Nat Commun ; 10(1): 3664, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413258

ABSTRACT

Interneurons are critical for the proper functioning of neural circuits. While often morphologically complex, their dendrites have been ignored for decades, treating them as linear point neurons. Exciting new findings reveal complex, non-linear dendritic computations that call for a new theory of interneuron arithmetic. Using detailed biophysical models, we predict that dendrites of FS basket cells in both hippocampus and prefrontal cortex come in two flavors: supralinear, supporting local sodium spikes within large-volume branches and sublinear, in small-volume branches. Synaptic activation of varying sets of these dendrites leads to somatic firing variability that cannot be fully explained by the point neuron reduction. Instead, a 2-stage artificial neural network (ANN), with sub- and supralinear hidden nodes, captures most of the variance. Reduced neuronal circuit modeling suggest that this bi-modal, 2-stage integration in FS basket cells confers substantial resource savings in memory encoding as well as the linking of memories across time.


Subject(s)
Dendrites/physiology , Electrical Synapses/physiology , Interneurons/physiology , Hippocampus/cytology , Memory, Long-Term , Models, Neurological , Neural Networks, Computer , Prefrontal Cortex/cytology
10.
Front Cell Neurosci ; 8: 287, 2014.
Article in English | MEDLINE | ID: mdl-25278837

ABSTRACT

Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1) repetitive action potentials (Regular Spiking-RS), and (2) an initial cluster of 2-5 action potentials with short interspike interval (ISIs) followed by single spikes (Intrinsic Bursting-IB). A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume, and branch number) and passive [Mean Electrotonic Path length (MEP)] features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume, and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

SELECTION OF CITATIONS
SEARCH DETAIL