Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39002541

ABSTRACT

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.

2.
J Immunol ; 210(7): 959-972, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36883865

ABSTRACT

IgE Abs are a common mediator of allergic responses and are generally produced in type 2 immune responses to allergens. Allergen stimulation of IgE-bound FcεRI on mast cells or basophils induces the production of chemical mediators and cytokines. In addition, IgE binding to FcεRI without allergen promotes the survival or proliferation of these and other cells. Thus, spontaneously produced natural IgE can increase an individual's susceptibility to allergic diseases. Mice deficient in MyD88, a major TLR signaling molecule, have high serum levels of natural IgE, the mechanism for which remains unknown. In this study, we demonstrated that the high serum IgE levels were maintained from weaning by memory B cells (MBCs). IgE from plasma cells and sera from most Myd88-/- mice, but none of the Myd88+/- mice, recognized Streptococcus azizii, a commensal bacterium overrepresented in the lungs of Myd88-/- mice. IgG1+ MBCs from the spleen also recognized S. azizii. The serum IgE levels declined with the administration of antibiotics and were boosted by challenge with S. azizii in Myd88-/- mice, indicating the contribution of S. azizii-specific IgG1+ MBCs to the natural IgE production. Th2 cells were selectively increased in the lungs of Myd88-/- mice and were activated upon addition of S. azizii in the lung cells ex vivo. Finally, lung nonhematopoietic cells, and CSF1 overproduced therefrom, were responsible for natural IgE production in Myd88-/- mice. Thus, some commensal bacteria may prime the Th2 response and natural IgE production in the MyD88-defective lung environment in general.


Subject(s)
Hypersensitivity , Myeloid Differentiation Factor 88 , Animals , Mice , Myeloid Differentiation Factor 88/metabolism , Immunoglobulin E , Lung , Allergens , Receptors, IgE/metabolism , Immunoglobulin G , Bacteria
3.
Nat Immunol ; 13(8): 744-52, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22729248

ABSTRACT

Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1(hi) monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs.


Subject(s)
Chemokines/biosynthesis , Hair Follicle/immunology , Langerhans Cells/physiology , Stress, Physiological , Alopecia , Animals , Cell Movement , Chemokine CCL20/biosynthesis , Chemokine CCL8/biosynthesis , Chemokines/metabolism , Hair Follicle/metabolism , Humans , Keratinocytes/metabolism , Langerhans Cells/immunology , Mice , Mice, Hairless , Receptors, CCR2/metabolism , Receptors, CCR6/metabolism , Receptors, CCR8/metabolism , Skin/immunology
4.
Arch Toxicol ; 98(1): 181-205, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971544

ABSTRACT

Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1ß is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1ß gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1ß gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1ß KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1ß deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1ß. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1ß deletion-potentiated and ACR-induced neurotoxicity in mice.


Subject(s)
Acrylamide , Neurotoxicity Syndromes , Animals , Mice , Acrylamide/toxicity , Brain , Cerebral Cortex , Gene Expression Profiling , Mice, Inbred C57BL , Neurotoxicity Syndromes/genetics
5.
Am J Respir Cell Mol Biol ; 69(3): 328-339, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37192434

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial pneumonia caused by the excessive production and deposition of extracellular matrix components, including type I collagen. Activated fibroblasts, called α-SMA (α-smooth muscle actin)-expressing myofibroblasts, are the major source of type I collagen in pulmonary fibrosis (PF), but the mechanisms underlying disease progression have not been fully elucidated. Here, we obtained lung fibroblasts from patients with IPF from both nonfibrotic and fibrotic areas as determined by a lung computed tomography scan and compared gene expression between these areas by DNA microarray. We found that ANGPTL4 (angiopoietin-like 4) was highly expressed only in fibroblasts from the fibrotic area. ANGPTL4 was selectively expressed in the fibroblastic area of IPF lungs, where the myofibroblast marker α-SMA was also expressed. ANGPTL4 also regulates the gene expression of fibrosis-related markers, cell migration, and proliferation. In addition, ANGPTL4 expression in a murine model of PF induced by treatment with bleomycin was significantly induced in the lungs from the acute to the chronic phase. Single-cell transcriptome analysis during the course of bleomycin-induced PF revealed that Angptl4 was predominantly expressed in the activated fibroblasts and myofibroblasts. Moreover, the administration of recombinant ANGPTL4 to the bleomycin-induced fibrosis model significantly increased collagen deposition and exacerbated the PF. In contrast, the pathogenesis of PF in Angptl4-deficient mice was improved. These results indicate that ANGPTL4 is critical for the progression of PF and might be an early diagnostic marker and therapeutic target for IPF.

6.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(7): 213-226, 2023.
Article in English | MEDLINE | ID: mdl-37518010

ABSTRACT

Inflammation is a host defense response to various invading stimuli, but an excessive and persistent inflammatory response can cause tissue injury, which can lead to irreversible organ damage and dysfunction. Excessive inflammatory responses are believed to link to most human diseases. A specific type of leukocyte infiltration into invaded tissues is required for inflammation. Historically, the underlying molecular mechanisms of this process during inflammation were an enigma, compromising research in the fields of inflammation, immunology, and pathology. However, the pioneering discovery of chemotactic cytokines (chemokines), monocyte-derived neutrophil chemotactic factor (MDNCF; interleukin [IL]-8, CXCL8) and monocyte chemotactic and activating factor (MCAF; monocyte chemotactic factor 1 [MCP-1], CCL2) in the late 1980s finally enabled us to address this issue. In this review, we provide a historical overview of chemokine research over the last 35 years.


Subject(s)
Chemokine CCL2 , Interleukin-8 , Humans , Chemokines , Cytokines , Inflammation/pathology , Interleukin-8/physiology , Monocytes/pathology , Monocytes/physiology
7.
Am J Physiol Renal Physiol ; 322(6): F667-F679, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35435002

ABSTRACT

Recent studies have revealed the connection between amino acid chirality and diseases. We have previously reported that the gut microbiota produces various d-amino acids in a murine acute kidney injury (AKI) model. Here, we further explored the pathophysiological role of d-alanine (d-Ala) in AKI. Levels of d-Ala were evaluated in a murine AKI model. We analyzed transcripts of the N-methyl-d-aspartate (NMDA) receptor, a receptor for d-Ala, in tubular epithelial cells (TECs). The therapeutic effect of d-Ala was then assessed in vivo and in vitro. Finally, the plasma level of d-Ala was evaluated in patients with AKI. The Grin genes encoding NMDA receptor subtypes were expressed in TECs. Hypoxic conditions change the gene expression of Grin1, Grin2A, and Grin2B. d-Ala protected TECs from hypoxia-related cell injury and induced proliferation after hypoxia. These protective effects are associated with the chirality of d-Ala. d-Ala inhibits reactive oxygen species (ROS) production and improves mitochondrial membrane potential, through NMDA receptor signaling. The ratio of d-Ala to l-Ala was increased in feces, plasma, and urine after the induction of ischemia-reperfusion (I/R). Moreover, Enterobacteriaceae, such as Escherichia coli and Klebsiella oxytoca, produce d-Ala. Oral administration of d-Ala ameliorated kidney injury after the induction of I/R in mice. Deficiency of NMDA subunit NR1 in tubular cells worsened kidney damage in AKI. In addition, the plasma level of d-Ala was increased and reflected the level of renal function in patients with AKI. In conclusion, d-Ala has protective effects on I/R-induced kidney injury. Moreover, the plasma level of d-Ala reflects the estimated glomerular filtration rate in patients with AKI. d-Ala could be a promising therapeutic target and potential biomarker for AKI.NEW & NOTEWORTHY d-Alanine has protective effects on I/R-induced kidney injury. d-Ala inhibits ROS production and improves mitochondrial membrane potential, resulting in reduced TEC necrosis by hypoxic stimulation. The administration of d-Ala protects the tubules from I/R injury in mice. Moreover, the plasma level of d-Ala is conversely associated with eGFR in patients with AKI. Our data suggest that d-Ala is an appealing therapeutic target and a potential biomarker for AKI.


Subject(s)
Acute Kidney Injury , Alanine , Reperfusion Injury , Acute Kidney Injury/metabolism , Alanine/therapeutic use , Animals , Apoptosis/genetics , Biomarkers , Humans , Hypoxia , Ischemia , Mice , N-Methylaspartate , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate , Reperfusion Injury/metabolism
8.
Biochem Biophys Res Commun ; 599: 113-119, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35180470

ABSTRACT

Pulmonary fibrosis (PF) is a progressive fibrotic disease with poor prognosis and suboptimal therapeutic options. Although macrophages have been implicated in PF, the role of macrophage subsets, particularly interstitial macrophages (IMs), remains unknown. We performed a time-series single-cell RNA sequencing analysis of the silica-induced mouse PF model. Among the macrophage subsets in fibrotic lungs, Lyve1lo MHC IIhi IMs increased with fibrosis, and highly expressed profibrotic genes. Additionally, we identified C1q as an IM-specific marker. Experiments with C1q-diphtheria toxin receptor-GFP knock-in (C1qKI) mice revealed that IMs are distributed around fibrotic nodules. Depletion of C1q+ IMs in C1qKI mice decreased activated fibroblasts and epithelial cells; however, bodyweight loss and neutrophil infiltration were exacerbated in silica-induced PF. Collectively, these results suggest that IMs have profibrotic and anti-inflammatory properties and that the selective inhibition of the profibrotic function of IMs without compromising their anti-inflammatory effects is a potential novel therapeutic strategy for PF.


Subject(s)
Complement C1q/metabolism , Macrophages/pathology , Pulmonary Fibrosis/pathology , Animals , Biomarkers/metabolism , Complement C1q/genetics , Disease Models, Animal , Gene Expression , Heparin-binding EGF-like Growth Factor/genetics , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Silicon Dioxide/toxicity
9.
Biochem Biophys Res Commun ; 603: 88-93, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35278885

ABSTRACT

Pulmonary fibrosis is a progressive fibrotic disease with a poor prognosis and has suboptimal therapeutic options. The complement protein, C1q, which has various functions, such as promoting phagocytosis and signal transduction, has been shown to exacerbate several fibrosis-related diseases such as myofibrosis. In this study, we examined the role and cellular targets of C1q in pulmonary fibrosis. Silica-induced pulmonary fibrotic C1q-deficient mice showed improvement in fibrosis, and intratracheal administration of C1q to normal mice led to the induction of fibrotic changes. Single-cell RNA sequencing analysis revealed the early activation of fibroblasts and type 2 alveolar epithelial cells after intratracheal administration of C1q, and treatment of primary lung fibroblasts with C1q induced the expression of profibrotic genes. Thus, the inhibition of C1q may be regarded as a therapeutic target for pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Animals , Bleomycin/adverse effects , Complement C1q , Fibroblasts/metabolism , Fibrosis , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/metabolism , Silicon Dioxide/adverse effects
10.
Int Immunol ; 33(12): 665-671, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34270737

ABSTRACT

Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in the lungs, which induces thickening of the alveolar walls, ultimately leading to the destruction of alveolar structures and respiratory failure. Idiopathic PF, the cause of which is unknown, has a poor prognosis with a median survival of 2-4 years after diagnosis. There is currently no known curative treatment. The mechanism underlying PF is thought to be initiated by the dysfunction of type II alveolar epithelial cells, which leads to ECM overproduction through the activation of fibroblasts. In addition, it has been suggested that a variety of cells contribute to fibrotic processes. In particular, clinical and basic research findings examining the roles of macrophages suggest that they may be pivotal regulators of PF. In this review, we discuss the characteristics, functions and origins of subsets of macrophages involved in PF, including resident alveolar, interstitial and monocyte-derived macrophages.


Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , Macrophages/immunology , Animals , Extracellular Matrix/immunology , Humans
11.
Int Immunol ; 33(5): 261-272, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33258927

ABSTRACT

BACKGROUND: We previously found two distinct passenger dendritic cell (DC) subsets in the rat liver that played a central role in the liver transplant rejection. In addition, a tolerance-inducing protocol, donor-specific transfusion (DST), triggered systemic polytopical production of depleting alloantibodies to donor class I MHC (MHCI) antigen (DST-antibodies). METHODS: We examined the role of DST-antibodies in the trafficking of graft DC subsets and the alloresponses in a rat model. We also examined an anti-donor class II MHC (MHCII) antibody that recognizes donor DCs more selectively. RESULTS: Preoperative transfer of DST-antibodies or DST pretreatment eliminated all passenger leukocytes, including both DC subsets and depleted the sessile DCs in the graft to ~20% of control. The CD172a+CD11b/c+ immunogenic subset was almost abolished. The intrahost direct or semi-direct allorecognition pathway was successfully blocked, leading to a significant suppression of the CD8+ T-cell response in the recipient lymphoid organs and the graft with delayed graft rejection. Anti-donor MHCII antibody had similar effects without temporary graft damage. Although DST pretreatment had a priming effect on the proliferative response of recipient regulatory T cells, DST-primed sera and the anti-donor MHCII antibody did not. CONCLUSION: DST-antibodies and anti-donor MHCII antibodies could suppress the CD8+ T-cell-mediated liver transplant rejection by depleting donor immunogenic DCs, blocking the direct or semi-direct pathways of allorecognition. Donor MHCII-specific antibodies may be applicable as a selective suppressant of anti-donor immunity for clinical liver transplantation without the cellular damage of donor MHCII- graft cells and recipient cells.


Subject(s)
Dendritic Cells/immunology , Graft Rejection/immunology , Histocompatibility Antigens Class I/immunology , Isoantibodies/immunology , Animals , Animals, Genetically Modified/immunology , Antibody Formation/immunology , Antigens, Differentiation/immunology , CD11b Antigen/immunology , CD8-Positive T-Lymphocytes , Graft Survival/immunology , Immune Tolerance/immunology , Liver Transplantation/methods , Rats , Rats, Inbred Lew , T-Lymphocytes, Regulatory/immunology , Tissue Donors , Transplantation, Homologous/methods
12.
Cancer Sci ; 112(8): 2993-3004, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34014607

ABSTRACT

With the widespread use of programmed death receptor-1 (PD-1) blockade therapy, sensitive and specific predictive biomarkers that guide patient selection are urgently needed. T-cell receptor (TCR) repertoire, which reflects antitumor T-cell responses based on antigen specificity, is expected as a novel biomarker for PD-1 blockade therapy. In the present study, the TCR repertoire of eight patients with gastrointestinal cancer treated with anti-PD-1 antibody (nivolumab) was analyzed. To analyze the tumor-associated T-cell clones in the blood and their mobilization into the tumor, we focused on T-cell clones that presented in both blood and tumor (blood-tumor overlapping clones). Responders to PD-1 blockade tended to exhibit a higher number of overlapping clones in the tumor and a higher total frequency in the blood. Moreover, a higher total frequency of overlapping clones in blood CD8+ T cells before treatment was associated with a favorable clinical response. Collectively, these results suggest the possibility of blood-tumor TCR repertoire overlap to predict clinical response to PD-1 blockade and guide patient selection before the treatment.


Subject(s)
Gastrointestinal Neoplasms/drug therapy , Immune Checkpoint Inhibitors/administration & dosage , Nivolumab/administration & dosage , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, DNA/methods , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , Female , Gastrointestinal Neoplasms/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Middle Aged , Nivolumab/pharmacology , Precision Medicine , Treatment Outcome
13.
J Infect Chemother ; 26(6): 604-610, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32094050

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infectious diseases and can be life-threatening in healthcare-settings. MRSA is classified into health-care associated (HA)-MRSA strains and community acquired (CA)-MRSA strains based on genotype and phenotype. CA-MRSA has been reported to show the lower minimal inhibitory concentration (MIC) of some antibiotics as compared to HA-MRSA. Recently, the prevalence of CA-MRSA has been increased in worldwide. CA-MRSA is isolated not only from the healthy individuals in a community but also from the patients in healthcare settings. However, the changing trend in frequency of HA-MRSA and CA-MRSA in the hospital setting is not clear. Therefore, we analyzed the trend of MIC to speculate the frequency of HA-MRSA and CA-MRSA in the facility. Moreover, gene mutations were evaluated on resistant gene loci with next generation sequencer. The frequency of strains with low MIC of beta-lactam antibiotics was gradually increased in isolated MRSA strains from the hospitalized patients. Whole genome analysis revealed the frequency of gene mutation was also decreased in some resistant loci, such as blaZ and blaR1. These findings highlight the changing trend of MRSA strains isolated from hospitalized patients.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , beta-Lactamases/genetics , beta-Lactams/pharmacology , Anti-Bacterial Agents/pharmacology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/microbiology , Cross Infection/diagnosis , Cross Infection/microbiology , DNA, Bacterial , Female , Genotype , Humans , Japan , Male , Microbial Sensitivity Tests/trends , Middle Aged , Mutation , Prevalence , Protein Structure, Tertiary/genetics , Staphylococcal Infections/diagnosis , Whole Genome Sequencing
14.
Biochem Biophys Res Commun ; 515(4): 579-585, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31178143

ABSTRACT

Alveolar epithelial type II cells (AEC2) are stem cells of the alveoli and play crucial roles in maintaining lung homeostasis and the pathogenesis of lung diseases. We recently reported on an organoid culture system for endogenous murine AEC2. Despite advances in generation of human induced pluripotent stem cell-derived AEC2, in vitro expansion of endogenous human AEC2 has not been reported and genetic manipulation of human AEC2 has been difficult. Here, we show that endogenous human AEC2 could be cultured and passaged using a three-dimensional culture system with a specific combination of signal ligands and inhibitors. The culture system was suitable for retroviral gene transduction into AEC2. Transduction of pulmonary fibrosis-associated mutant surfactant protein C (SFPTCΔexon4) into AEC2 revealed characteristic transcriptional traits similar to those of patients with idiopathic pulmonary fibrosis. Our culture system will be a useful tool for investigating human AEC2 functions in vitro.


Subject(s)
Alveolar Epithelial Cells/cytology , Cell Culture Techniques , Pulmonary Alveoli/cytology , Pulmonary Surfactant-Associated Protein C/genetics , Spheroids, Cellular/cytology , Cell Line , Cells, Cultured , Fibroblasts , Fibrosis , Gene Expression Profiling , Humans , Hyperoxia/metabolism , Induced Pluripotent Stem Cells/cytology , Ligands , Male , Mutation , Transcription, Genetic , Transcriptome
15.
Biochem Biophys Res Commun ; 514(3): 684-690, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31078262

ABSTRACT

Pulmonary fibrosis is characterized by progressive and irreversible scarring of alveoli, which causes reduction of surface epithelial area and eventually respiratory failure. The precise mechanism of alveolar scarring is poorly understood. In this study, we explored transcriptional signatures of activated fibroblasts in alveolar airspaces by using intratracheal transfer in bleomycin-induced lung fibrosis. Lung fibroblasts transferred into injured alveoli upregulated genes related to translation and metabolism in the first two days, and upregulated genes related to extracellular matrix (ECM) production between day 2 and 7. Upstream analysis of these upregulated genes suggested possible contribution of hypoxia-inducible factors 1a (Hif1a) to fibroblast activation in the first two days, and possible contribution of kruppel-like factor 4 (Klf4) and glioma-associated oncogene (Gli) transcription factors to fibroblast activation in the following profibrotic phase. Fibroblasts purified based on high Acta2 expression after intratracheal transfer were also characterized by ECM production and upstream regulation by Klf4 and Gli proteins. Pharmacological inhibition of Gli proteins by GANT61 in bleomycin-induced lung fibrosis altered the pattern of scarring characterized by dilated airspaces and smaller fibroblast clusters. Activated fibroblasts isolated from GANT61-treated mice showed decreased migration capacity, suggesting that Gli signaling inhibition attenuated fibroblast activation. In conclusion, we revealed transcriptional signatures and possible upstream regulators of activated fibroblasts in injured alveolar airspaces. The altered scar formation by Gli signaling inhibition supports that activated fibroblasts in alveolar airspaces may play a critical role in scar formation.


Subject(s)
Cicatrix/metabolism , Cicatrix/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction , Zinc Finger Protein GLI1/metabolism , Animals , Cell Movement/drug effects , Cicatrix/genetics , Fibroblasts/drug effects , Kruppel-Like Factor 4 , Mice, Inbred C57BL , Pulmonary Fibrosis/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Transcription Factors/metabolism , Up-Regulation/genetics
16.
Int Immunol ; 30(2): 53-67, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29361165

ABSTRACT

Donor-specific blood transfusion is known to induce alloresponses and lead to immunosuppression. We examined their underlying mechanisms by employing fully allogeneic rat combinations. Transfused recipients efficiently produced alloantibodies of the IgM and IgG subclasses directed against donor class I MHC. The recipients exhibited active expansion of CD4+ T cells and CD4+FOXP3+ regulatory T cells (Treg cells), followed by CD45R+ B cells and IgM+ or IgG subclass+ antibody-forming cells mainly in the spleen. From 1.5 days, the resident MHCII+CD103+ dendritic cells (DCs) in the splenic T-cell area, periarterial lymphocyte sheath, formed clusters with recipient BrdU+ or 5-ethynyl-2'-deoxyuridine+ cells, from which the proliferative response of CD4+ T cells originated peaking at 3-4 days. Transfusion-induced antibodies had donor passenger cell-depleting activity in vitro and in vivo and could suppress acute GvH disease caused by donor T cells. Furthermore, Treg cells significantly suppressed mixed leukocyte reactions in a donor-specific manner. In conclusion, single blood transfusion efficiently induced a helper T-cell-dependent anti-donor class I MHC antibody-forming cell response with immunoglobulin class switching, and a donor-specific Treg cell response mainly in the spleen, probably by way of the indirect allorecognition via resident DCs. These antibodies and Treg cells may be involved, at least partly, in the donor-specific transfusion-induced suppression of allograft rejection.


Subject(s)
Antibody Formation/immunology , Blood Transfusion , Isoantibodies/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens , Blood Donors , Cell Communication/immunology , Complement System Proteins/immunology , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Graft vs Host Disease/etiology , Immunity , Immunohistochemistry , Immunosuppression Therapy , Isoantibodies/blood , Lymphocyte Culture Test, Mixed , Lymphocyte Depletion , Rats , T-Lymphocytes, Regulatory/metabolism
17.
Nature ; 500(7461): 232-6, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23842501

ABSTRACT

Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4(+)FOXP3(+) regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules--including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)--in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-ß-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.


Subject(s)
Clostridium/immunology , Metagenome/immunology , T-Lymphocytes, Regulatory/physiology , Adult , Animals , Cell Proliferation , Clostridium/classification , Clostridium/genetics , Colitis/microbiology , Colitis/pathology , Colon/immunology , Colon/microbiology , Disease Models, Animal , Feces/microbiology , Germ-Free Life , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-10/metabolism , Male , Metagenome/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, SCID , RNA, Ribosomal, 16S/genetics , Rats , Rats, Inbred F344 , T-Lymphocytes, Regulatory/cytology
18.
Cancer Sci ; 108(10): 1967-1973, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28787768

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not only a well-established immunotherapy for hematologic malignancies, but is potentially useful for treating solid tumors refractory to available therapies. However, application of allo-HSCT to solid tumors is limited, despite the beneficial antitumor effects, by the risk of graft-versus-host disease (GVHD). CD4+ T cells have been implicated in several aspects of GVHD, and suppress antitumor CD8+ T-cell responses. In the present study, we investigated clinically applicable allo-HSCT protocols designed to maximize antitumor effects while reducing the risk of GVHD. We used a mouse model of allo-HSCT with s.c. tumors. We found that myeloablative conditioning was associated with better inhibition of tumor growth but with severe acute GVHD. Early treatment with anti-CD4 mAb substantially ameliorated GVHD while preserving antitumor effects, leading to improved survival in myeloablative allo-HSCT. Late treatment with anti-CD4 mAb also ameliorated GVHD to some extent. Donor lymphocyte infusion in GVHD mice treated with anti-CD4 mAb further suppressed tumor growth without exacerbating GVHD. Collectively, our results suggest that myeloablative allo-HSCT followed by anti-CD4 mAb treatment and donor lymphocyte infusion could be a potent and safe immunotherapy for patients with cancers refractory to available therapies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , CD4 Antigens/immunology , Colonic Neoplasms/therapy , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/mortality , Lymphocyte Transfusion/methods , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Combined Modality Therapy , Disease Models, Animal , Graft vs Host Disease/immunology , Immunotherapy, Adoptive/methods , Mice , Survival Analysis , Transplantation Conditioning , Transplantation, Homologous/mortality , Treatment Outcome
19.
Am J Pathol ; 186(3): 579-86, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26806086

ABSTRACT

Exposure to cigarette smoke is a major cause of olfactory dysfunction. However, the underlying mechanisms by which cigarette smoke interferes with the highly regenerative olfactory nerve system remain unclear. To investigate whether cigarette smoke induces olfactory dysfunction by disrupting cell proliferation and cell survival in the olfactory epithelium (OE), we developed a mouse model of smoking that involved intranasal administration of a cigarette smoke solution (CSS). Immunohistological analyses and behavioral testing showed that CSS administration during a period of 24 days reduced the number of olfactory marker protein-positive mature olfactory receptor neurons (ORNs) in the OE and induced olfactory dysfunction. These changes coincided with a reduction in the number of SOX2(+) ORN progenitors and Ki-67(+) proliferating cells in the basal layer of the OE, an increase in the number of caspase-3(+) apoptotic cells, and an increase in the expression of mRNA for the inflammatory cytokines IL-1ß and IL-6. Notably, the proliferating ORN progenitor population recovered after cessation of treatment with CSS, resulting in the subsequent restoration of mature ORN numbers and olfaction. These results suggest that SOX2(+) ORN progenitors are targets of CSS-induced impairment of the OE, and that by damaging the ORN progenitor population and increasing ORN death, CSS exposure eventually overwhelms the regenerative capacity of the epithelium, resulting in reduced numbers of mature ORNs and olfactory dysfunction.


Subject(s)
Olfactory Mucosa/physiopathology , Smoking/adverse effects , Stem Cells/physiology , Administration, Intranasal , Animals , Caspase 3/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Disease Models, Animal , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred C57BL , Olfactory Mucosa/drug effects , Olfactory Receptor Neurons/drug effects , Olfactory Receptor Neurons/physiology , SOXB1 Transcription Factors/metabolism , Stem Cells/drug effects
20.
Circ Res ; 116(4): 612-23, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25563839

ABSTRACT

RATIONALE: In-hospital outcomes are generally acceptable in patients with type B dissection; however, some patients present with undesirable complications, such as aortic expansion and rupture. Excessive inflammation is an independent predictor of adverse clinical outcomes. OBJECTIVE: We have investigated the underlying mechanisms of catastrophic complications after acute aortic dissection (AAD) in mice. METHODS AND RESULTS: When angiotensin II was administered in lysyl oxidase inhibitor-preconditioned mice, AAD emerged within 24 hours. The dissection was initiated at the proximal site of the descending thoracic aorta and propagated distally into an abdominal site. Dissection of the aorta caused dilatation, and ≈70% of the mice died of aortic rupture. AAD triggered CXCL1 and granulocyte-colony stimulating factor expression in the tunica adventitia of the dissected aorta, leading to elevation of circulating CXCL1/granulocyte-colony stimulating factor levels. Bone marrow CXCL12 was reduced. These chemokine changes facilitated neutrophil egress from bone marrow and infiltration into the aortic adventitia. Interference of CXCL1 function using an anti-CXCR2 antibody reduced neutrophil accumulation and limited aortic rupture post AAD. The tunica adventitia of the expanded dissected aorta demonstrated high levels of interleukin-6 (IL-6) expression. Neutrophils were the major sources of IL-6, and CXCR2 neutralization significantly reduced local and systemic levels of IL-6. Furthermore, disruption of IL-6 effectively suppressed dilatation and rupture of the dissected aorta without any influence on the incidence of AAD and neutrophil mobilization. CONCLUSIONS: Adventitial CXCL1/granulocyte-colony stimulating factor expression in response to AAD triggers local neutrophil recruitment and activation. This leads to adventitial inflammation via IL-6 and results in aortic expansion and rupture.


Subject(s)
Adventitia/metabolism , Aorta, Thoracic/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Dissection/metabolism , Aortic Rupture/metabolism , Chemokine CXCL1/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Neutrophil Activation , Neutrophil Infiltration , Neutrophils/metabolism , Acute Disease , Adventitia/diagnostic imaging , Aged , Aminopropionitrile/analogs & derivatives , Aortic Dissection/chemically induced , Aortic Dissection/diagnostic imaging , Aortic Dissection/drug therapy , Angiotensin II , Animals , Antibodies, Monoclonal/pharmacology , Aorta, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/chemically induced , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/drug therapy , Aortic Rupture/chemically induced , Aortic Rupture/diagnostic imaging , Aortic Rupture/prevention & control , Aortography , Chemokine CXCL12/metabolism , Chemotaxis, Leukocyte , Dilatation, Pathologic , Disease Models, Animal , Female , Humans , Inflammation Mediators/metabolism , Interleukin-6/blood , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neutrophil Activation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/transplantation , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL