Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 580(7801): 124-129, 2020 04.
Article in English | MEDLINE | ID: mdl-32238941

ABSTRACT

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Subject(s)
Biological Clocks/physiology , Embryonic Development/physiology , Pluripotent Stem Cells/cytology , Somites/cytology , Somites/growth & development , Abnormalities, Multiple/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Biological Clocks/genetics , Embryonic Development/genetics , Gene Editing , Gene Expression Regulation, Developmental/genetics , Glycosyltransferases/deficiency , Glycosyltransferases/genetics , Hernia, Diaphragmatic/genetics , Humans , In Vitro Techniques , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Phenotype , Somites/metabolism , Time Factors
2.
Nat Biomed Eng ; 3(7): 558-570, 2019 07.
Article in English | MEDLINE | ID: mdl-31182836

ABSTRACT

The recapitulation of bone formation via the in vitro generation of bone-like nodules is frequently used to understand bone development. However, current bone-induction techniques are slow and difficult to reproduce. Here, we report the formation of bone-like nodules within ten days, via the use of retinoic acid (RA) to induce the osteogenic differentiation of human induced pluripotent stem cells (hiPSCs) into osteoblast-like and osteocyte-like cells that create human bone tissue when implanted in calvarial defects in mice. We also show that the induction of bone formation depends on cell signalling through the RA receptors RARα and RARß, which simultaneously activate the BMP (bone morphogenetic protein) and Wnt signalling pathways. Moreover, by using patient-derived hiPSCs, the bone-like nodules recapitulated the osteogenesis-imperfecta phenotype, which was rescued via the correction of disease-causing mutations and partially by an mTOR (mechanistic target of rapamycin) inhibitor. The method of inducing bone nodules may serve as a fast and reproducible model for the study of the formation of both healthy and pathological bone.


Subject(s)
Bone and Bones/pathology , Bone and Bones/physiology , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/physiology , Osteogenesis/physiology , Animals , Bone Morphogenetic Proteins , Bone and Bones/drug effects , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/drug effects , Male , Mice , Mice, Nude , Mice, SCID , Mutation , Osteogenesis/drug effects , Osteogenesis/genetics , Phenotype , Receptors, Retinoic Acid/drug effects , TOR Serine-Threonine Kinases/drug effects , Transplantation , Tretinoin/pharmacology , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL