Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 120(23): e2214652120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252975

ABSTRACT

α-Synuclein accumulates in Lewy bodies, and this accumulation is a pathological hallmark of Parkinson's disease (PD). Previous studies have indicated a causal role of α-synuclein in the pathogenesis of PD. However, the molecular and cellular mechanisms of α-synuclein toxicity remain elusive. Here, we describe a novel phosphorylation site of α-synuclein at T64 and the detailed characteristics of this post-translational modification. T64 phosphorylation was enhanced in both PD models and human PD brains. T64D phosphomimetic mutation led to distinct oligomer formation, and the structure of the oligomer was similar to that of α-synuclein oligomer with A53T mutation. Such phosphomimetic mutation induced mitochondrial dysfunction, lysosomal disorder, and cell death in cells and neurodegeneration in vivo, indicating a pathogenic role of α-synuclein phosphorylation at T64 in PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Phosphorylation , Lewy Bodies/metabolism , Brain/metabolism
2.
Mov Disord ; 38(6): 1056-1067, 2023 06.
Article in English | MEDLINE | ID: mdl-37066491

ABSTRACT

BACKGROUND: The intercellular transmission of pathogenic proteins plays a crucial role in the progression of neurodegenerative diseases. Previous research has shown that the neuronal uptake of such proteins is activity-dependent; however, the detailed mechanisms underlying activity-dependent α-synuclein transmission in Parkinson's disease remain unclear. OBJECTIVE: To examine whether α-synuclein transmission is affected by Ca2+ -calmodulin-calcineurin signaling in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were used to examine the effects of the modulation of Ca2+ -calmodulin-calcineurin signaling on the neuronal uptake of α-synuclein preformed fibrils. The effects of modulating Ca2+ -calmodulin-calcineurin signaling on the development of α-synuclein pathology were examined using a mouse model injected with α-synuclein preformed fibrils. RESULTS: Modulation of Ca2+ -calmodulin-calcineurin signaling by inhibiting voltage-gated Ca2+ channels, calmodulin, and calcineurin blocked the neuronal uptake of α-synuclein preformed fibrils via macropinocytosis. Different subtypes of voltage-gated Ca2+ channel differentially contributed to the neuronal uptake of α-synuclein preformed fibrils. In wild-type mice inoculated with α-synuclein preformed fibrils, we found that inhibiting calcineurin ameliorated the development of α-synuclein pathology. CONCLUSION: Our data suggest that Ca2+ -calmodulin-calcineurin signaling modulates α-synuclein transmission and has potential as a therapeutic target for Parkinson's disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Animals , Mice , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Calmodulin/metabolism , Calcineurin/metabolism , Neurons/metabolism
3.
Acta Neuropathol ; 143(1): 15-31, 2022 01.
Article in English | MEDLINE | ID: mdl-34854996

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.


Subject(s)
Aging/pathology , Brain/pathology , Lewy Body Disease/pathology , TDP-43 Proteinopathies/pathology , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Female , Humans , Lewy Body Disease/complications , Lewy Body Disease/genetics , Male , Middle Aged , TDP-43 Proteinopathies/complications , TDP-43 Proteinopathies/genetics
4.
Mov Disord ; 37(10): 2033-2044, 2022 10.
Article in English | MEDLINE | ID: mdl-35989519

ABSTRACT

BACKGROUND: Lewy body diseases (LBDs), which are pathologically defined as the presence of intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies, encompass Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Autopsy studies have shown that the olfactory bulb (OB) is one of the regions where Lewy pathology develops and initiates its spread in the brain. OBJECTIVE: This study aims to clarify how Lewy pathology spreads from the OB and affects brain functions using nonhuman primates. METHODS: We inoculated α-Syn preformed fibrils into the unilateral OBs of common marmosets (Callithrix jacchus) and performed pathological analyses, manganese-enhanced magnetic resonance imaging, and 18 F-fluoro-2-deoxy-d-glucose positron emission tomography up to 6 months postinoculation. RESULTS: Severe α-Syn pathology was observed within the olfactory pathway and limbic system, while mild α-Syn pathology was seen in a wide range of brain regions, including the substantia nigra pars compacta, locus coeruleus, and even dorsal motor nucleus of the vagus nerve. The brain imaging analyses showed reduction in volume of the OB and progressive glucose hypometabolism in widespread brain regions, including the occipital lobe, and extended beyond the pathologically affected regions. CONCLUSIONS: We generated a novel nonhuman primate LBD model with α-Syn propagation from the OB. This model suggests that α-Syn propagation from the OB is related to OB atrophy and cerebral glucose hypometabolism in LBDs. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Lewy Body Disease , Parkinson Disease , Animals , Callithrix/metabolism , Deoxyglucose/metabolism , Glucose/metabolism , Lewy Body Disease/pathology , Manganese/metabolism , Olfactory Bulb/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362177

ABSTRACT

Accumulation of α-synuclein (α-syn) is the pathological hallmark of α-synucleinopathy. Rapid eye movement (REM) sleep behavior disorder (RBD) is a pivotal manifestation of α-synucleinopathy including Parkinson's disease (PD). RBD is clinically confirmed by REM sleep without atonia (RWA) in polysomnography. To accurately characterize RWA preceding RBD and their underlying α-syn pathology, we inoculated α-syn preformed fibrils (PFFs) into the striatum of A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice which exhibit RBD-like phenotypes with RWA. RWA phenotypes were aggravated by PFFs-inoculation in A53T BAC-SNCA Tg mice at 1 month after inoculation, in which prominent α-syn pathology in the pedunculopontine nucleus (PPN) was observed. The intensity of RWA phenotype could be dependent on the severity of the underlying α-syn pathology.


Subject(s)
REM Sleep Behavior Disorder , Synucleinopathies , Animals , Humans , Mice , alpha-Synuclein/genetics , Sleep, REM , Mice, Transgenic , Synucleinopathies/genetics , REM Sleep Behavior Disorder/genetics , Muscle Hypotonia , Phenotype
6.
J Biol Chem ; 295(16): 5257-5277, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32144204

ABSTRACT

ß-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form ß-cholesterylglucoside (ß-GlcChol) in vitro ß-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate ß-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (ß-GalChol), in addition to ß-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for ß-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for ß-GalChol formation. Liquid chromatography-tandem MS revealed that ß-GlcChol and ß-GalChol are present throughout development from embryo to adult in the mouse brain. We found that ß-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of ß-GalChol biosynthesis appeared to be during myelination. We also found that ß-GlcChol and ß-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form ß-GalChol. This is the first report of the existence of ß-GalChol in vertebrates and how ß-GlcChol and ß-GalChol are formed in the brain.


Subject(s)
Brain/metabolism , Cholesterol/analogs & derivatives , Glucosylceramidase/metabolism , Animals , Brain/cytology , Cell Line, Tumor , Cells, Cultured , Cholesterol/metabolism , Female , Galactose/metabolism , Galactosylceramides/metabolism , Glucosylceramidase/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Myelin Sheath/metabolism , Neuroglia/metabolism , Neurons/metabolism , Oryzias , Rats , Rats, Wistar
7.
Hum Mol Genet ; 28(11): 1894-1904, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30689867

ABSTRACT

Parkinson's disease (PD) is characterized by dopaminergic (DA) cell loss and the accumulation of pathological alpha synuclein (asyn), but its precise pathomechanism remains unclear, and no appropriate animal model has yet been established. Recent studies have shown that a heterozygous mutation of glucocerebrosidase (gba) is one of the most important genetic risk factors in PD. To create mouse model for PD, we crossed asyn Bacterial Artificial Chromosome transgenic mice with gba heterozygous knockout mice. These double-mutant (dm) mice express human asyn in a physiological manner through its native promoter and showed an increase in phosphorylated asyn in the regions vulnerable to PD, such as the olfactory bulb and dorsal motor nucleus of the vagus nerve. Only dm mice showed a significant reduction in DA cells in the substantia nigra pars compacta, suggesting these animals were suitable for a prodromal model of PD. Next, we investigated the in vivo mechanism by which GBA insufficiency accelerates PD pathology, focusing on lipid metabolism. Dm mice showed an increased level of glucosylsphingosine without any noticeable accumulation of glucosylceramide, a direct substrate of GBA. In addition, the overexpression of asyn resulted in decreased GBA activity in mice, while dm mice tended to show an even further decreased level of GBA activity. In conclusion, we created a novel prodromal mouse model to study the disease pathogenesis and develop novel therapeutics for PD and also revealed the mechanism by which heterozygous gba deficiency contributes to PD through abnormal lipid metabolism under conditions of an altered asyn expression in vivo.


Subject(s)
Glucosylceramidase/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Lipid Metabolism/genetics , Mice , Mice, Knockout , Mice, Transgenic , Parkinson Disease/metabolism , Parkinson Disease/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Prodromal Symptoms
8.
Mov Disord ; 36(7): 1554-1564, 2021 07.
Article in English | MEDLINE | ID: mdl-33813737

ABSTRACT

BACKGROUND: The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE: The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS: Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION: Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Mice , Nitriles , Parkinson Disease/drug therapy , Pyridones/pharmacology , alpha-Synuclein/genetics
9.
Mov Disord ; 36(9): 2036-2047, 2021 09.
Article in English | MEDLINE | ID: mdl-33547846

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) show motor symptoms as well as various non-motor symptoms. Postmortem studies of PD have suggested that initial alpha-synuclein (α-Syn) pathology develops independently in the olfactory bulb and lower brainstem, spreading from there stereotypically. However, it remains unclear how these two pathological pathways contribute to the clinicopathological progression of PD. OBJECTIVE: The objective of this study was to examine the clinicopathological contribution of α-Syn spread from the olfactory bulb. METHODS: We conducted pathological and behavioral analyses of human α-Syn bacterial artificial chromosome transgenic mice injected with α-Syn preformed fibrils into the bilateral olfactory bulb up to 10 months postinjection. RESULTS: α-Syn preformed fibril injections induced more widespread α-Syn pathology in the transgenic mice than that in wild-type mice. Severe α-Syn pathology in the transgenic mice injected with α-Syn preformed fibrils was initially observed along the olfactory pathway and later in the brain regions that are included in the limbic system and have connections with it. The α-Syn pathology was accompanied by regional atrophy, neuron loss, reactive astrogliosis, and microglial activation, which were remarkable in the hippocampus. Behavioral analyses revealed hyposmia, followed by anxiety-like behavior and memory impairment, but not motor dysfunction, depression-like behavior, or circadian rhythm disturbance. CONCLUSION: Our data suggest that α-Syn spread from the olfactory bulb mainly affects the olfactory pathway and limbic system as well as its related regions, leading to the development of hyposmia, anxiety, and memory loss in PD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Olfactory Bulb , alpha-Synuclein , Animals , Anosmia , Anxiety/etiology , Disease Models, Animal , Humans , Memory Disorders/etiology , Mice , Mice, Transgenic , Olfactory Bulb/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
10.
Brain ; 143(1): 249-265, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31816026

ABSTRACT

Parkinson's disease is one of the most common movement disorders and is characterized by dopaminergic cell loss and the accumulation of pathological α-synuclein, but its precise pathogenetic mechanisms remain elusive. To develop disease-modifying therapies for Parkinson's disease, an animal model that recapitulates the pathology and symptoms of the disease, especially in the prodromal stage, is indispensable. As subjects with α-synuclein gene (SNCA) multiplication as well as point mutations develop familial Parkinson's disease and a genome-wide association study in Parkinson's disease has identified SNCA as a risk gene for Parkinson's disease, the increased expression of α-synuclein is closely associated with the aetiology of Parkinson's disease. In this study we generated bacterial artificial chromosome transgenic mice harbouring SNCA and its gene expression regulatory regions in order to maintain the native expression pattern of α-synuclein. Furthermore, to enhance the pathological properties of α-synuclein, we inserted into SNCA an A53T mutation, two single-nucleotide polymorphisms identified in a genome-wide association study in Parkinson's disease and a Rep1 polymorphism, all of which are causal of familial Parkinson's disease or increase the risk of sporadic Parkinson's disease. These A53T SNCA bacterial artificial chromosome transgenic mice showed an expression pattern of human α-synuclein very similar to that of endogenous mouse α-synuclein. They expressed truncated, oligomeric and proteinase K-resistant phosphorylated forms of α-synuclein in the regions that are specifically affected in Parkinson's disease and/or dementia with Lewy bodies, including the olfactory bulb, cerebral cortex, striatum and substantia nigra. Surprisingly, these mice exhibited rapid eye movement (REM) sleep without atonia, which is a key feature of REM sleep behaviour disorder, at as early as 5 months of age. Consistent with this observation, the REM sleep-regulating neuronal populations in the lower brainstem, including the sublaterodorsal tegmental nucleus, nuclei in the ventromedial medullary reticular formation and the pedunculopontine nuclei, expressed phosphorylated α-synuclein. In addition, they also showed hyposmia at 9 months of age, which is consistent with the significant accumulation of phosphorylated α-synuclein in the olfactory bulb. The dopaminergic neurons in the substantia nigra pars compacta degenerated, and their number was decreased in an age-dependent manner by up to 17.1% at 18 months of age compared to wild-type, although the mice did not show any related locomotor dysfunction. In conclusion, we created a novel mouse model of prodromal Parkinson's disease that showed RBD-like behaviour and hyposmia without motor symptoms.


Subject(s)
Brain/metabolism , Disease Models, Animal , Mice , Olfaction Disorders/genetics , Parkinson Disease/genetics , Prodromal Symptoms , REM Sleep Behavior Disorder/genetics , alpha-Synuclein/genetics , Animals , Cell Count , Chromosomes, Artificial, Bacterial , Electroencephalography , Electromyography , Endopeptidase K/metabolism , Mice, Transgenic , Olfaction Disorders/physiopathology , Parkinson Disease/physiopathology , Polymorphism, Single Nucleotide , REM Sleep Behavior Disorder/physiopathology , Sleep , alpha-Synuclein/metabolism
11.
PLoS Genet ; 11(4): e1005065, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25835295

ABSTRACT

Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.


Subject(s)
Axons/metabolism , Gaucher Disease/genetics , Glucosylceramidase/deficiency , Oryzias/genetics , alpha-Synuclein/metabolism , Animals , Axons/ultrastructure , Disease Models, Animal , Gaucher Disease/metabolism , Gaucher Disease/pathology , Glucosylceramidase/genetics , Oryzias/metabolism , Phagosomes/metabolism
12.
J Hum Genet ; 61(10): 899-902, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27251004

ABSTRACT

Even now, only a portion of leukodystrophy patients are correctly diagnosed, though various causative genes have been identified. In the present report, we describe a case of adult-onset leukodystrophy in a woman with ovarian failure. By whole-exome sequencing, a compound heterozygous mutation consisting of NM_020745.3 (AARS2_v001):c.1145C>A and NM_020745.3 (AARS2_v001):c.2255+1G>A was identified. Neither of the mutations has been previously reported, and this is the first report of alanyl-transfer RNA synthetase 2 mutation in Asia. We anticipate that further studies of the molecular basis of leukodystrophy will provide insight into its pathogenesis and hopefully lead to sophisticated diagnostic and treatment strategies.


Subject(s)
Alanine-tRNA Ligase/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Heterozygote , Mutation , Primary Ovarian Insufficiency/genetics , Adult , Alleles , Biomarkers , Brain/pathology , DNA Mutational Analysis , Female , Genetic Loci , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Humans , Japan , Magnetic Resonance Imaging , Primary Ovarian Insufficiency/diagnosis , Syndrome
13.
Hum Mol Genet ; 22(12): 2423-34, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23449626

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective dopaminergic cell loss in the substantia nigra, but its pathogenesis remains unclear. The recessively inherited familial PD genes PARK2 and PARK6 have been attributed to mutations in the Parkin and PTEN-induced kinase 1 (PINK1) genes, respectively. Recent reports suggest that PINK1 works upstream of Parkin in the same pathway to regulate mitochondrial dynamics and/or conduct autophagic clearance of damaged mitochondria. This phenomenon is preserved from Drosophila to human cell lines but has not been demonstrated in a vertebrate animal model in vivo. Here, we developed a medaka fish (Oryzias latipes) model that is deficient in Pink1 and Parkin. We found that despite the lack of a conspicuous phenotype in single mutants for Pink1 or Parkin, medaka that are deficient in both genes developed phenotypes similar to that of human PD: late-onset locomotor dysfunction, a decrease in dopamine levels and a selective degeneration of dopaminergic neurons. Further analysis also revealed defects in mitochondrial enzymatic activity as well as cell death. Consistently, PINK1 and Parkin double-deficient MEF showed a further decrease in mitochondrial membrane potential and mitochondrial complex I activity as well as apoptosis compared with single-deficient MEF. Interestingly, these mitochondrial abnormalities in Parkin-deficient MEF were compensated by exogenous PINK1, but not by disease-related mutants. These results suggest that PINK1 and Parkin work in a complementary way to protect dopaminergic neurons by maintaining mitochondrial function in vertebrates.


Subject(s)
Dopamine/metabolism , Fish Proteins/metabolism , Neurons/metabolism , Oryzias/metabolism , Parkinson Disease/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Disease Models, Animal , Drosophila , Fish Proteins/genetics , Gene Knockdown Techniques , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Neurons/cytology , Oryzias/genetics , Parkinson Disease/genetics , Phenotype , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Vertebrates/genetics , Vertebrates/metabolism
14.
Dev Growth Differ ; 56(1): 98-107, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24286287

ABSTRACT

Genome editing using engineered nucleases such as transcription activator-like effector nucleases (TALENs) has become a powerful technology for reverse genetics. In this study, we have described efficient detection methods for TALEN-induced mutations at endogenous loci and presented guidelines of TALEN design for efficient targeted mutagenesis in medaka, Oryzias latipes. We performed a heteroduplex mobility assay (HMA) using an automated microchip electrophoresis system, which is a simple and high-throughput method for evaluation of in vivo activity of TALENs and for genotyping mutant fish of F1 or later generations. We found that a specific pattern of mutations is dominant for TALENs harboring several base pairs of homologous sequences in target sequence. Furthermore, we found that a 5' T, upstream of each TALEN-binding sequence, is not essential for genomic DNA cleavage. Our findings provide information that expands the potential of TALENs and other engineered nucleases as tools for targeted genome editing in a wide range of organisms, including medaka.


Subject(s)
Endodeoxyribonucleases/metabolism , Gene Targeting/methods , Mutagenesis, Site-Directed/methods , Oryzias/genetics , Animals , Endodeoxyribonucleases/genetics , Heteroduplex Analysis
15.
Res Sq ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824782

ABSTRACT

Extraction of α-Synuclein (αSyn) aggregates from Lewy body disease (LBD) brains has been widely described yet templated fibrillization of LB-αSyn often fails to propagate its structural and functional properties. We recently demonstrated that aggregates amplified from LB-αSyn (ampLB) show distinct biological activities in vitro compared to human αSyn preformed fibrils (hPFF) formed de novo. Here we compare the in vivo biological activities of hPFF and ampLB regarding seeding activity, latency in inducing pathology, distribution of pathology, inclusion morphology, and cell-type preference. Injection of ampLB into mice expressing only human αSyn (Thy1:SNCA/Snca-/- mice) induced pathologies similar to those of LBD subjects that were distinct from those induced by hPFF-injection or developing spontaneously with aging. Importantly, αSyn aggregates in ampLB-injected Thy1:SNCA/Snca-/- mice maintained the unique biological and conformational features of original LB-αSyn. These results indicate that ampLB-injection, rather than conventional PFF-injection or αSyn overexpression, faithfully models key aspects of LBD.

16.
Nat Commun ; 14(1): 6892, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898614

ABSTRACT

Extraction of α-Synuclein (αSyn) aggregates from Lewy body disease (LBD) brains has been widely described yet templated fibrillization of LB-αSyn often fails to propagate its structural and functional properties. We recently demonstrated that aggregates amplified from LB-αSyn (ampLB) show distinct biological activities in vitro compared to human αSyn preformed fibrils (hPFF) formed de novo. Here we compare the in vivo biological activities of hPFF and ampLB regarding seeding activity, latency in inducing pathology, distribution of pathology, inclusion morphology, and cell-type preference. Injection of ampLB into mice expressing only human αSyn (male Thy1:SNCA/Snca-/- mice) induced pathologies similar to those of LBD subjects that were distinct from those induced by hPFF-injection or developing spontaneously with aging. Importantly, αSyn aggregates in ampLB-injected Thy1:SNCA/Snca-/- mice maintained the unique biological and conformational features of original LB-αSyn. These results indicate that ampLB-injection, rather than conventional PFF-injection or αSyn overexpression, faithfully models key aspects of LBD.


Subject(s)
Lewy Body Disease , Mice , Male , Humans , Animals , Lewy Body Disease/pathology , alpha-Synuclein/metabolism , Lewy Bodies/metabolism , Brain/metabolism , Aging
18.
Neurotherapeutics ; 19(1): 289-304, 2022 01.
Article in English | MEDLINE | ID: mdl-34935120

ABSTRACT

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and intraneuronal α-synuclein (α-syn) inclusions. It is highly needed to establish a rodent model that recapitulates the clinicopathological features of PD within a short period to efficiently investigate the pathological mechanisms and test disease-modifying therapies. To this end, we analyzed three mouse lines, i.e., wild-type mice, wild-type human α-syn bacterial artificial chromosome (BAC) transgenic (BAC-SNCA Tg) mice, and A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice, receiving dorsal striatum injections of human and mouse α-syn preformed fibrils (hPFFs and mPFFs, respectively). mPFF injections induced more severe α-syn pathology in most brain regions, including the ipsilateral SNpc, than hPFF injections in all genotypes at 1-month post-injection. Although these Tg mouse lines expressed a comparable amount of α-syn in the brains, the mPFF-injected A53T BAC-SNCA Tg mice exhibited the most severe α-syn pathology as early as 0.5-month post-injection. The mPFF-injected A53T BAC-SNCA Tg mice showed a 38% reduction in tyrosine hydroxylase (TH)-positive neurons in the ipsilateral SNpc, apomorphine-induced rotational behavior, and motor dysfunction at 2 months post-injection. These data indicate that the extent of α-syn pathology induced by α-syn PFF injection depends on the types of α-syn PFFs and exogenously expressed α-syn in Tg mice. The mPFF-injected A53T BAC-SNCA Tg mice recapitulate the key features of PD more rapidly than previously reported mouse models, suggesting their usefulness for testing disease-modifying therapies as well as analyzing the pathological mechanisms.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Chromosomes, Artificial, Bacterial/genetics , Dopamine , Dopaminergic Neurons/pathology , Lewy Bodies/pathology , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/genetics
20.
Methods Mol Biol ; 2322: 119-130, 2021.
Article in English | MEDLINE | ID: mdl-34043198

ABSTRACT

Parkinson's disease (PD) is pathologically characterized by intraneuronal α-synuclein (α-Syn) inclusions called Lewy bodies (LBs) and the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Autopsy studies have suggested that Lewy pathology initially occurs in the olfactory bulb and enteric nervous system, subsequently spreading in the brain stereotypically. Recent studies have demonstrated that templated fibrillization and intercellular dissemination of misfolded α-Syn underlie this pathological progression. Injection of animals with α-Syn preformed fibrils (PFFs) can recapitulate LB-like inclusions and the subsequent intercellular transmission of α-Syn pathology. Moreover, targeting specific brain regions or body parts enables the generation of unique models depending on the injection sites. These features of α-Syn PFF-injected animal models provide a platform to explore disease mechanisms and to test disease modifying therapies in PD research. Here, we describe a methodology for the generation of α-Syn PFFs and the surgery on mice.


Subject(s)
Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Mice , Substantia Nigra/metabolism , Substantia Nigra/pathology
SELECTION OF CITATIONS
SEARCH DETAIL