Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Plant Cell ; 34(10): 4007-4027, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35818121

ABSTRACT

Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. Here, we isolated viable Arabidopsis thaliana ero1 ero2 double mutants that are highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress induced by dithiothreitol was delayed in ero1 ero2. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in ero1 ero2 reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.


Subject(s)
Arabidopsis , Protein Disulfide-Isomerases , Arabidopsis/genetics , Arabidopsis/metabolism , Dithiothreitol , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Glutathione/metabolism , Hypoxia , Oxidation-Reduction , Oxygen/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Folding
2.
Plant Cell ; 34(4): 1375-1395, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35078237

ABSTRACT

Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Signal Transduction/physiology , Sulfhydryl Compounds/metabolism , Transcription Factors/metabolism
3.
Plant Physiol ; 187(4): 2451-2468, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34599589

ABSTRACT

Plant glutathione S-transferases (GSTs) are glutathione-dependent enzymes with versatile functions, mainly related to detoxification of electrophilic xenobiotics and peroxides. The Arabidopsis (Arabidopsis thaliana) genome codes for 53 GSTs, divided into seven subclasses; however, understanding of their precise functions is limited. A recent study showed that class II TGA transcription factors TGA2, TGA5, and TGA6 are essential for tolerance of UV-B-induced oxidative stress and that this tolerance is associated with an antioxidative function of cytosolic tau-GSTs (GSTUs). Specifically, TGA2 controls the expression of several GSTUs under UV-B light, and constitutive expression of GSTU7 in the tga256 triple mutant is sufficient to revert the UV-B-susceptible phenotype of tga256. To further study the function of GSTU7, we characterized its role in mitigation of oxidative damage caused by the herbicide methyl viologen (MV). Under non-stress conditions, gstu7 null mutants were smaller than wild-type (WT) plants and delayed in the onset of the MV-induced antioxidative response, which led to accumulation of hydrogen peroxide and diminished seedling survival. Complementation of gstu7 by constitutive expression of GSTU7 rescued these phenotypes. Furthermore, live monitoring of the glutathione redox potential in intact cells with the fluorescent probe Grx1-roGFP2 revealed that GSTU7 overexpression completely abolished the MV-induced oxidation of the cytosolic glutathione buffer compared with WT plants. GSTU7 acted as a glutathione peroxidase able to complement the lack of peroxidase-type GSTs in yeast. Together, these findings show that GSTU7 is crucial in the antioxidative response by limiting oxidative damage and thus contributes to oxidative stress resistance in the cell.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Glutathione Transferase/genetics , Herbicides/adverse effects , Oxidative Stress , Paraquat/adverse effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Glutathione Transferase/metabolism
4.
Plant Physiol ; 186(1): 125-141, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33793922

ABSTRACT

Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Arabidopsis/drug effects , Biosensing Techniques , Chloroplasts/drug effects , Herbicides/adverse effects , Oxidation-Reduction , Paraquat/adverse effects , Seedlings/drug effects , Seedlings/metabolism
5.
J Exp Bot ; 72(5): 1891-1905, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33188435

ABSTRACT

Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidative Stress , Transcription Factors , Ultraviolet Rays , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
New Phytol ; 221(3): 1649-1664, 2019 02.
Article in English | MEDLINE | ID: mdl-30347449

ABSTRACT

Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered any meaningful H2 O2 sensing in living plants. We established H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirmed sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrated that glutathione dominates sensor reduction in vivo. We showed the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals the late and prolonged impact of the oxidative burst in the cytosol that is modified in redox mutants. We provided a well defined toolkit for H2 O2 monitoring in planta and showed that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH oxidase-mediated ROS signalling.


Subject(s)
Arabidopsis/metabolism , Green Fluorescent Proteins/metabolism , Hydrogen Peroxide/metabolism , Intracellular Space/metabolism , Respiratory Burst , Sulfhydryl Compounds/metabolism , Arabidopsis/drug effects , Cytosol/drug effects , Cytosol/metabolism , Glutathione/metabolism , Hydrogen-Ion Concentration , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Respiratory Burst/drug effects , Seedlings/drug effects , Seedlings/metabolism , Signal Transduction/drug effects , Vitamin K 3/pharmacology
16.
Plant Physiol ; 193(3): 1729-1731, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37607252
17.
Plant Physiol ; 190(2): 1085-1087, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35894688

Subject(s)
Ethylenes , Hypoxia , Humans
18.
Plant Physiol ; 190(4): 2082-2084, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36149313
SELECTION OF CITATIONS
SEARCH DETAIL