Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Phytother Res ; 33(3): 845-855, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30632211

ABSTRACT

Plants of the Brassicaceae family are well-known for containing the glucosinolate myrosinase system, which is able to release isothiocyanates after plant biotic and abiotic lesions. Erucin (ERU; 1-isothiocyanato-4-(methylthio)-butane), an isothiocyanate particularly abundant in arugula (Eruca sativa Mill., Eruca vesicaria L., etc.), derives from the hydrolysis of the glucosinolate glucoerucin by the enzyme myrosinase. Many other natural isothiocyanates influence cancer cells and, in particular, induce antiproliferative effects at relatively high concentrations. Similar antiproliferative effects have also been shown by the newly emerging gasotransmitter hydrogen sulfide (H2 S) and by H2 S-releasing compounds. In a previous study, our group demonstrated that isothiocyanates release H2 S in biological environments. In this work, we demonstrated the H2 S-donor properties of ERU in pancreatic adenocarcinoma cells (AsPC-1) and delineated its profile as a chemopreventive or anticancer agent. Indeed, ERU showed significant antiproliferative effects: ERU inhibited AsPC-1 cell viability at relatively high concentrations (30-100 µM). Moreover, ERU inhibited cell migration, altered the AsPC-1 cell cycle, and exhibited proapoptotic effects. Finally, ERU inhibited ERK1/2 phosphorylation. This mechanism is particularly important in AsPC-1 cells because they are characterized by a mutation in KRAS that determines KRAS hyperactivation followed by MAP-kinase hyperphosphorylation, which plays a pivotal role in pancreatic cancer proliferation, growth, and survival.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Sulfides/pharmacology , Thiocyanates/pharmacology , Adenocarcinoma/pathology , Cell Line, Tumor , Humans , Isothiocyanates/pharmacology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics
2.
J Sci Food Agric ; 99(9): 4235-4241, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30801703

ABSTRACT

BACKGROUND: The antimicrobial activity of allyl-isothiocyanate (AITC) on plant pathogens is well known and has already been demonstrated in the strawberry with respect to Botritis cinerea fungal infection using postharvest biofumigation. In the present study, vapours of 0.08 mg L-1 of Brassica meal-derived AITC were applied to strawberry to assess its effect on fruit nutraceutical and biochemical parameters after 2 days of storage at 20 °C and 90% relative humidity. RESULTS: Allyl-isothiocyanate showed no detrimental effect on final strawberry quality, anti-oxidant properties or ascorbic acid content. By contrast, an increased amount of asparagine and a higher ascorbate and glutathione redox potential were registered in the fruit soon after treatment. A reversible glutathione depletion action of AITC was also observed. Finally, total AITC residues in treated strawberry were quantified and a relatively high amount of AITC-adducts was found in fruit tissues. CONCLUSION: The findings of the present study not only confirm the high potentiality of biofumigation with respect to extending the shelf-life of fruit, but also provide some insight regarding the mechanisms of action of AITC at the cellular level as a possible elicitor of fruit protective responses. Nevertheless, the nature of the AITC-adducts formed in fruit tissues needs further attention to enable a health and safety assessment of the final fruit. © 2019 Society of Chemical Industry.


Subject(s)
Brassica/chemistry , Dietary Supplements/analysis , Food Preservation/methods , Food Preservatives/pharmacology , Fragaria/chemistry , Fruit/chemistry , Isothiocyanates/pharmacology , Plant Extracts/pharmacology , Botrytis/drug effects , Botrytis/physiology , Food Storage , Fragaria/microbiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control
3.
J Chem Ecol ; 44(12): 1190-1205, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30218254

ABSTRACT

We investigated the influences of two structurally similar glucosinolates, phenethylglucosinolate (gluconasturtiin, NAS) and its (S)-2-hydroxyl derivative glucobarbarin (BAR), as well as their hydrolysis products on larvae of the generalist Mamestra brassicae (Lepidoptera: Noctuidae). Previous results suggested a higher defensive activity of BAR than NAS based on resistance toward M. brassicae larvae of natural plant genotypes of Barbarea vulgaris R. Br. (Brassicaceae) dominated by BAR. In the present study, the hypothesis of a higher defensive activity of BAR than NAS was tested by comparing two Barbarea species similarly dominated either by BAR or by NAS and by testing effects of isolated BAR and NAS on larval survival and feeding preferences. Larvae reared on leaf disks of B. verna (Mill.) Asch. had a lower survival than those reared on B. vulgaris P- and G-chemotypes. Leaves of B. verna were dominated by NAS, whereas B. vulgaris chemotypes were dominated by BAR or its epimer. In addition, B. verna leaves showed a threefold higher activity of the glucosinolate-activating myrosinase enzymes. The main product of NAS from breakdown by endogenous enzymes including myrosinases ("autolysis") in B. verna leaves was phenethyl isothiocyanate, while the main products of BAR in autolyzed B. vulgaris leaves were a cyclized isothiocyanate product, namely an oxazolidine-2-thione, and a downstream metabolite, an oxazolidin-2-one. The glucosinolates BAR and NAS were isolated and offered to larvae on disks of cabbage. Both glucosinolates exerted similar negative effects on larval survival but effects of NAS tended to be more detrimental. Low concentrations of BAR, but not of NAS, stimulated larval feeding, whereas high BAR concentrations acted deterrent. NAS only tended to be deterrent at the highest concentration, but the difference was not significant. Recoveries of NAS and BAR on cabbage leaf disks were similar, and when hydrolyzed by mechanical leaf damage, the same isothiocyanate-type products as in Barbarea plants were formed with further conversion of BAR to cyclic products, (R)-5-phenyloxazolidine-2-thione [(R)-barbarin] and (R)-5-phenyloxazolidin-2-one [(R)-resedine]. We conclude that a previously proposed generally higher defensive activity of BAR than NAS to M. brassicae larvae could not be confirmed. Indeed, the higher resistance of NAS-containing B. verna plants may be due to a combined effect of rather high concentrations of NAS and a relatively high myrosinase activity or other plant traits not investigated yet.


Subject(s)
Antibiosis , Barbarea/chemistry , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Herbivory , Moths/physiology , Animals , Glucosinolates/analysis , Glycoside Hydrolases/analysis , Larva/growth & development , Larva/physiology , Moths/growth & development , Species Specificity
4.
J Food Sci Technol ; 54(3): 751-760, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28298689

ABSTRACT

The use of natural compounds to preserve fruit quality and develop high value functional products deserves attention especially in the growing industry of processing and packaging ready-to-eat fresh-cut fruit. In this work, potential mechanisms underlying the effects of postharvest biofumigation with brassica meal-derived allyl-isothiocyanate on the physiological responses and quality of 'Hayward' kiwifruits were studied. Fruits were treated with 0.15 mg L-1 of allyl-isothiocyanate vapours for 5 h and then stored in controlled atmosphere (2% O2, 4.5% CO2) at 0 °C and 95% relative humidity, maintaining an ethylene concentration <0.02 µL L-1. The short- and long-term effects of allyl-isothiocyanate on fruit quality traits, nutraceutical attributes, glutathione content, antiradical capacity and the activity of antioxidant enzymes were investigated. The treatment did not influence the overall fruit quality after 120 days of storage, but interestingly it enhanced the ascorbic acid, polyphenols and flavan-3-ol content, improving the antioxidant potential of kiwifruit. The short-term effect of allyl-isothiocyanate was evidenced by an increase of superoxide dismutase activity and of oxidative glutathione redox state, which were restored 24 h after the treatment. The expression levels of genes involved in detoxification functions, ethylene, ascorbate and phenylpropanoid biosynthesis, were also significantly affected upon allyl-isothiocyanate application. These results suggest that allyl-isothiocyanate treatment probably triggered an initial oxidative burst, followed by an induction of protective mechanisms, which finally increased the nutraceutical and technological value of treated kiwifruits.

5.
Biomedicines ; 11(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38137502

ABSTRACT

Modulation of mitochondrial K channels represents a pharmacological strategy to promote cardioprotective effects. Isothiocyanates emerge as molecules capable of releasing hydrogen sulfide (H2S), an endogenous pleiotropic gasotransmitter responsible for anti-ischemic cardioprotective effects also through the involvement of mitoK channels. Erucin (ERU) is a natural isothiocyanate resulting from the enzymatic hydrolysis of glucosinolates (GSLs) present in Eruca sativa Mill. seeds, an edible plant of the Brassicaceae family. In this experimental work, the specific involvement of mitoKATP channels in the cardioprotective effect induced by ERU was evaluated in detail. An in vivo preclinical model of acute myocardial infarction was reproduced in rats to evaluate the cardioprotective effect of ERU. Diazoxide was used as a reference compound for the modulation of potassium fluxes and 5-hydroxydecanoic acid (5HD) as a selective blocker of KATP channels. Specific investigations on isolated cardiac mitochondria were carried out to evaluate the involvement of mitoKATP channels. The results obtained showed ERU cardioprotective effects against ischemia/reperfusion (I/R) damage through the involvement of mitoKATP channels and the consequent depolarizing effect, which in turn reduced calcium entry and preserved mitochondrial integrity.

6.
Environ Sci Pollut Res Int ; 28(44): 62353-62367, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34191264

ABSTRACT

Animal manure application to soils is considered to be one of the main cause of antibiotic and bacterial pathogen spread in the environment. Pig livestock, which is the source of one of the most used fertilizer for cultivated land, is also a hotspot for antibiotics and antibiotic-resistant bacteria. Besides harsh chemical and physical sanitization treatments for the abatement of antibiotics and bacterial load in livestock waste, more sustainable and environmentally friendly strategies need to be considered. In this context, the use of natural substances which are proved useful for pest and disease control is currently under exploration for their role in the reduction of bacterial pathogen population. Among these, plants and derived products from the Brassicaceae family, characterized by the presence of a defensive glucosinolate-myrosinase enzymatic system, have been successfully exploited for years in agriculture using the so-called biofumigation technique against crop diseases. Although the application of biofumigation to suppress a range of soil borne pests has been well documented, no studies have been examined to reduce bacterial population in animal waste. In the present study, the release and the antibacterial activity of bioactive compounds deriving from different Brassicaceae defatted seed meals against pathogens and bacterial population in pig manure is addressed. Rapistrum rugosum and Brassica nigra defatted seed meals were found to be the most active products against tested pathogens and able to significantly reduce the bacterial load in the manure.


Subject(s)
Brassicaceae , Manure , Animals , Bacterial Load , Meals , Seeds , Swine
7.
Microorganisms ; 9(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924845

ABSTRACT

Nosema ceranae is a widespread parasite responsible for nosemosis Type C in Apis mellifera honey bees, reducing colony survival. The antibiotic fumagillin is the only commercial treatment available, but concerns are emerging about its persistence, safety, and pathogen resistance. The use of natural substances from Brassicaceae defatted seed meals (DSMs) with known antimicrobial and antioxidant properties was explored. Artificially infected bees were fed for 8 days with candies enriched with two concentrations, 2% and 4%, of two DSMs from Brassica nigra and Eruca sativa, containing a known amount of different glucosinolates (GSLs). The food palatability, GSL intake, bee survival, and treatment effects on N. ceranae spore counts were evaluated. Food consumption was higher for the two 2% DSM patties, for both B. nigra and E. sativa, but the GSL intake did not increase by increasing DSM to 4%, due to the resulting lower palatability. The 2% B. nigra patty decreased the bee mortality, while the higher concentration had a toxic effect. The N. ceranae control was significant for all formulates with respect to the untreated control (312,192.6 +/- 14,443.4 s.e.), and was higher for 4% B. nigra (120,366.3 +/- 13,307.1 s.e.). GSL hydrolysis products, the isothiocyanates, were detected and quantified in bee gut tissues. Brassicaceae DSMs showed promising results for their nutraceutical and protective effects on bees artificially infected with N. ceranae spores at the laboratory level. Trials in the field should confirm these results.

8.
Biomolecules ; 11(11)2021 11 08.
Article in English | MEDLINE | ID: mdl-34827655

ABSTRACT

The microsporidian fungus Nosema ceranae represents one of the primary bee infection threats worldwide and the antibiotic fumagillin is the only registered product for nosemosis disease control, while few alternatives are, at present, available. Natural bioactive compounds deriving from the glucosinolate-myrosinase system (GSL-MYR) in Brassicaceae plants, mainly isothiocyanates (ITCs), are known for their antimicrobial activity against numerous pathogens and for their health-protective effects in humans. This work explored the use of Brassica nigra and Eruca sativa defatted seed meal (DSM) GSL-containing diets against natural Nosema infection in Apis mellifera colonies. DSM patties from each plant species were obtained by adding DSMs to sugar candy at the concentration of 4% (w/w). The feeding was administered in May to mildly N. ceranae-infected honey bee colonies for four weeks at the dose of 250 g/week. In the treated groups, no significant effects on colony development and bee mortality were observed compared to the negative controls. The N. ceranae abundance showed a slight but significant decrease. Furthermore, the GSL metabolism in bees was investigated, and MYR hydrolytic activity was qualitatively searched in isolated bee midgut and hindgut. Interestingly, MYR activity was detected both in the bees fed DSMs and in the control group where the bees did not receive DSMs. In parallel, ITCs were found in gut tissues from the bees treated with DSMs, corroborating the presence of a MYR-like enzyme capable of hydrolyzing ingested GSLs. On the other hand, GSLs and other GSL hydrolysis products other than ITCs, such as nitriles, were found in honey produced by the treated bees, potentially increasing the health value of the final product for human consumption. The results are indicative of a specific effect on the N. ceranae infection in managed honey bee colonies depending on the GSL activation within the target organ.


Subject(s)
Nosema , Cyclohexanes , Fatty Acids, Unsaturated , Glucosinolates , Sesquiterpenes
9.
Nutrients ; 12(10)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036498

ABSTRACT

Lactic acid bacteria (LAB) "fermentates" confer a beneficial effect on intestinal function. However, the ability of new fermentations to improve LAB broth activity in preventing pathogen-induced intestinal inflammation and barrier dysfunction has not yet been studied. The objective of this study was to determine if broths of LAB fermented with Eruca sativa or Barbarea verna seed extracts prevent gut barrier dysfunction and interleukin-8 (CXCL8) release in vitro in human intestinal Caco-2 cells infected with enterohemorrhagic Escherichia coli (EHEC) O157:H7. LAB broths were assayed for their effects on EHEC growth and on Caco-2 viability; thereafter, their biological properties were analysed in a co-culture system consisting of EHEC and Caco-2 cells. Caco-2 cells infected with EHEC significantly increased CXCL8 release, and decreased Trans-Epithelial Electrical Resistance (TEER), a barrier-integrity marker. Notably, when Caco-2 cells were treated with LAB broth enriched with E. sativa seed extract and thereafter infected, both CXCL8 expression and epithelial dysfunction reduced compared to in untreated cells. These results underline the beneficial effect of broths from LAB fermented with E. sativa seed extracts in gut barrier and inflammation after EHEC infection and reveal that these LAB broths can be used as functional bioactive compounds to regulate intestinal function.


Subject(s)
Brassicaceae/chemistry , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Fermentation , Gastroenteritis/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillus acidophilus , Plant Extracts/pharmacology , Probiotics/pharmacology , Seeds/chemistry , Anti-Bacterial Agents , Barbarea/chemistry , Caco-2 Cells , Cell Survival/drug effects , Coculture Techniques , Drug Resistance, Bacterial , Electric Impedance , Escherichia coli Infections , Escherichia coli O157/pathogenicity , Gastroenteritis/microbiology , Humans , Interleukin-8/metabolism , Intestinal Mucosa/physiology , Phytotherapy , Plant Extracts/isolation & purification
10.
Br J Pharmacol ; 177(4): 824-835, 2020 02.
Article in English | MEDLINE | ID: mdl-30825379

ABSTRACT

BACKGROUND AND PURPOSE: Hydrogen sulfide (H2 S)-releasing agents are viewed as potential antihypertensive drugs. Recently, natural isothiocyanates emerged as original H2 S-donor agents. Among them, erucin, present in some edible cruciferous plants, shows suitable H2 S-releasing properties and features of "druggability." The aim of this work was to investigate the erucin-mediated release of H2 S inside vascular cells, its vasorelaxing effects, and activity on BP of normo and hypertensive animals. EXPERIMENTAL APPROACH: Intracellular H2 S-release and the hyperpolarizing effect of erucin were tested using fluorescent dye, in human aortic smooth muscle cells (HASMCs). Its direct vasorelaxing effect and ability to inhibit noradrenaline-induced vasoconstriction were evaluated on endothelium-intact or -denuded rat aortic rings. Its vasodilator properties were tested in coronary arteries using Langendorff-perfused rat hearts. Finally, erucin's antihypertensive activity was evaluated in vivo in normotensive and spontaneously hypertensive rats (SHRs) by recording systolic BP using the tail-cuff method. KEY RESULTS: Erucin induced the release of H2 S inside HASMCs. Moreover, erucin hyperpolarized the membrane of HASMCs membrane in a concentration-dependent manner. It induced vasodilatation of rat aortic rings, in endothelium-denuded vessels. This effect was further improved by the presence of endothelial NO. When pre-incubated with rat aortic rings, erucin induced concentration-dependent inhibition of noradrenaline-induced vasoconstriction. Erucin did not affect basal coronary flow but restored the flow to normal in pre-contracted coronary vessels. Finally, in vivo, erucin decreased systolic BP in SHRs by about 25%, and restored the BP to values observed in normotensive rats. CONCLUSIONS AND IMPLICATIONS: Erucin is an H2 S donor endowed with vasorelaxing and antihypertensive effects. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Subject(s)
Antihypertensive Agents , Sulfides , Animals , Antihypertensive Agents/pharmacology , Endothelium, Vascular , Rats , Sulfides/pharmacology , Thiocyanates/pharmacology , Vasoconstriction
11.
Int J Food Microbiol ; 289: 168-173, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30253309

ABSTRACT

Acrylamide is a potential carcinogenic molecule formed during food heat processing at high temperature (Maillard reaction). In the present study, the ability of the yeast Aureobasidium pullulans to deplete the acrylamide precursor free asparagine in fresh potatoes was investigated. A. pullulans applied before final frying changes the free amino acid composition of potatoes, decreasing the content of free asparagine by 16% and reducing acrylamide by 83% in fried potatoes. Potato browning was also reduced by yeast treatment without negative drawbacks on chip taste. This yeast, commonly used in fruit postharvest disease control, can therefore also be applied in potato and bakery industries to reduce food acrylamide content.


Subject(s)
Acrylamide/chemistry , Ascomycota/physiology , Cooking , Food Handling/methods , Food Microbiology/methods , Solanum tuberosum/microbiology , Amino Acids/chemistry , Asparagine/chemistry , Hot Temperature , Solanum tuberosum/chemistry
12.
J Agric Food Chem ; 56(5): 1595-601, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-18251502

ABSTRACT

Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes.


Subject(s)
Brassicaceae/chemistry , Glucosinolates/isolation & purification , Micelles , Plant Oils/isolation & purification , Proteins/isolation & purification , Cetrimonium , Cetrimonium Compounds/chemistry , Seeds/chemistry , Solubility , Solvents/chemistry
13.
Phytochemistry ; 153: 79-93, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29886160

ABSTRACT

Glucosinolates are found in plants of the order Brassicales and hydrolyzed to different breakdown products, particularly after tissue damage. In Barbarea vulgaris R.Br. (Brassicaceae), the dominant glucosinolate in the investigated "G-type" is glucobarbarin, (S)-2-hydroxy-2-phenylethylglucosinolate. Formation of the nitrile from glucobarbarin was observed in vitro, while a previously suggested thioamide (synonym thionamide) was not confirmed. Resedine (5-phenyl-1,3-oxazolidin-2-one) was detected after glucobarbarin hydrolysis in crushed B. vulgaris leaves and siliques, but not in intact parts. The abundance increased for several hours after completion of hydrolysis. The corresponding 1,3-oxazolidine-2-thione (OAT), with the common name barbarin, was also formed, and appeared to be the precursor of resedine. Addition of each of two non-endogenous OATs, (S)-5-ethyl-5-methylOAT and (R)-5-vinylOAT (R-goitrin), to a leaf homogenate resulted in formation of the corresponding 1,3-oxazolidin-2-ones (OAOs), confirming the metabolic connection of OAT to OAO. Formation of OAOs was inhibited by prior brief heating of the homogenate, suggesting enzyme involvement. We suggest the conversion of OATs to OAOs to be catalyzed by an enzyme ("oxazolidinethionase") responsible for turnover of OAT formed in intact plants. Resedine had been reported as an alkaloid from another species - Reseda luteola L. (Resedaceae) - naturally containing the glucosinolate glucobarbarin. However, resedine was not detected in intact R. luteola plants, but formed after tissue damage. The formation of resedine in two families suggests a broad distribution of putative OATases in the Brassicales; potentially involved in glucosinolate turnover that needs myrosinase activity as the committed step. In agreement with the proposed function of OATase, several candidate genes for myrosinases in glucosinolate turnover in intact plants were discovered in the B. vulgaris genome. We also suggest that biotechnological conversion of OATs to OAOs might improve the nutritional value of Brassicales protein. HPLC-MS/MS methods for detection of these glucobarbarin products are described.


Subject(s)
Brassicaceae/chemistry , Glucosinolates/metabolism , Oxazolidinones/metabolism , Thiones/metabolism , Brassicaceae/metabolism , Glucosinolates/chemistry , Molecular Structure , Oxazolidinones/chemistry , Species Specificity , Thioamides/chemistry , Thioamides/metabolism , Thiones/chemistry
14.
Int J Food Microbiol ; 248: 32-38, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28242420

ABSTRACT

Two Aureobasidium pullulans strains (L1 and L8), able to prevent postharvest fruit decay, were evaluated in order to elucidate how the competition for nutrients and space was involved in their activity against Monilinia laxa, the causal agent of peach brown rot. The competition for nutrients was studied by co-culturing pathogen conidia and antagonists in different conditions of nutrient availability and avoiding contact between them. Both antagonists prevented the germination of conidia of M. laxa in water, reducing germination rate by >35%. However, L1 and L8 showed the lowest inhibition of conidial germination in peach juice at 5%, with a reduction of 12.6% and 13.9% respectively. HPLC amino acid analysis of peach juice revealed that the addition of the yeast suspension greatly modified their composition: asparagine was completely depleted soon after 12h of incubation and was probably hydrolyzed to aspartic acid by the yeasts, as aspartic acid content markedly increased. Pure asparagine and aspartic acid were tested by in vitro trials at the concentrations found in peach juice: both influenced M. laxa growth, but in opposite ways. Asparagine stimulated pathogen growth; conversely, amended medium with aspartic acid significantly inhibited the conidia germination and mycelial development of M. laxa. Scanning Electron Microscopy revealed that both strains showed a great capability to compete with M. laxa for space (starting 8h after treatment), colonizing the wound surface and inhibiting pathogen growth. This study clearly showed that A. pullulans L1 and L8 strains could compete with M. laxa for nutrients and space; this mode of action may play an important role in the antagonistic activity, especially in the first hours of tritrophic host-pathogen-antagonist interaction, although several other mechanisms can interact each other.


Subject(s)
Antibiosis/physiology , Ascomycota/physiology , Asparagine/metabolism , Aspartic Acid/biosynthesis , Fruit and Vegetable Juices/microbiology , Fruit/microbiology , Prunus persica/microbiology , Saccharomycetales/growth & development , Germination/physiology , Glucans , Mycelium/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Spores, Fungal/growth & development
15.
J Agric Food Chem ; 65(15): 3167-3178, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28343387

ABSTRACT

A system of benzylic glucosinolates was found and characterized in common pepperweed, Lepidium densiflorum Schrad. The major glucosinolate was the novel 4-hydroxy-3,5-dimethoxybenzylglucosinolate (3,5-dimethoxysinalbin), present at high levels in seeds, leaves, and roots. Medium-level glucosinolates were 3,4-dimethoxybenzylglucosinolate and 3,4,5-trimethoxybenzylglucosinolate. Minor glucosinolates included benzylglucosinolate, 3-hydroxy- and 3-methoxybenzylglucosinolate, 4-hydroxybenzylglucosinolate (sinalbin), the novel 4-hydroxy-3-methoxybenzylglucosinolate (3-methoxysinalbin), and indole-type glucosinolates. A biosynthetic connection is suggested. NMR, UV, and ion trap MS/MS spectral data are reported, showing contrasting MS fragmentation of p-hydroxyls and p-methoxyls. Additional investigations by GC-MS focused on glucosinolate hydrolysis products. Whereas glucosinolates generally yielded isothiocyanates, the dominating 3,5-dimethoxysinalbin with a free p-hydroxyl group produced the corresponding alcohol and syringaldehyde (4-hydroxy-3,5-dimethoxybenzaldehyde). After thermal deactivation of the endogenous myrosinase enzyme, massive accumulation of the corresponding nitrile was detected. This case study points out how non-isothiocyanate glucosinolate hydrolysis products are prevalent in nature and of interest in both plant-pathogen interactions and human health.


Subject(s)
Isothiocyanates/chemistry , Lepidium/chemistry , Plant Extracts/chemistry , Thiocyanates/chemistry , Thioglucosides/chemistry , Hydrolysis , Molecular Structure , Plant Leaves/chemistry , Seeds/chemistry , Tandem Mass Spectrometry
16.
Biotechnol Prog ; 32(1): 26-35, 2016.
Article in English | MEDLINE | ID: mdl-26518537

ABSTRACT

The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids.


Subject(s)
Metabolic Engineering , Oleic Acid/biosynthesis , Plant Proteins/biosynthesis , Thiolester Hydrolases/biosynthesis , Ammonium Sulfate/chemistry , Biomass , Bioreactors , Carbon/metabolism , Culture Media , Cuphea/enzymology , Glycerol/metabolism , Oleic Acid/metabolism , Plant Proteins/metabolism , Thiolester Hydrolases/metabolism , Yarrowia/enzymology , Yarrowia/genetics
17.
J Agric Food Chem ; 53(19): 7494-501, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16159178

ABSTRACT

Previous work demonstrated that a commercial formulation of piperonyl butoxide (PBO) did inhibit the activity of some plant proteolytic enzymes. In this paper, the effect of pure PBO and nine pure PBO homologues (PBOH) appropriately synthesized toward bromelain and papain was studied in hydrocarbon solution using the bis(2-ethylhexyl)sodium sulfosuccinate (AOT) reverse micellar system. This study establishes that the majority of these compounds show, in vitro, interesting protease inhibition activities. The benzodioxole and dihydrobenzofuran structures, in particular, 5-[2-(2-butoxyethoxy)ethoxymethyl]-benzo[1,3]dioxole (EN 1-40) and 6-[2-(2-butoxyethoxy)ethoxymethyl]-5-propyl-2,3-dihydrobenzofuran (EN 16-5), respectively, appear to be responsible for protease inhibition. Measures of octanol/water partition coefficients on PBO and PBOH have demonstrated that water solubility plays a fundamental role in the expression of protease inhibition activity.


Subject(s)
Piperonyl Butoxide/analogs & derivatives , Piperonyl Butoxide/pharmacology , Plants/enzymology , Protease Inhibitors/pharmacology , Bromelains/antagonists & inhibitors , Micelles , Papain/antagonists & inhibitors
18.
J Food Prot ; 76(11): 1879-86, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24215691

ABSTRACT

The fungicidal effects of secondary metabolites produced by a strain of Penicillium expansum (R82) in culture filtrate and in a double petri dish assay were tested against one isolate each of Botrytis cinerea, Colletotrichum acutatum, and Monilinia laxa and six isolates of P. expansum, revealing inhibitory activity against every pathogen tested. The characterization of volatile organic compounds released by the R82 strain was performed by solid-phase microextraction-gas chromatographic techniques, and several compounds were detected, one of them identified as phenethyl alcohol (PEA). Synthetic PEA, tested in vitro on fungal pathogens, showed strong inhibition at a concentration of 1,230 µg/ml of airspace, and mycelium appeared more sensitive than conidia; nevertheless, at the concentration naturally emitted by the fungus (0.726 ± 0.16 m g/ml), commercial PEA did not show any antifungal activity. Therefore, a combined effect between different volatile organic compounds produced collectively by R82 can be hypothesized. This aspect suggests further investigation into the possibility of exploiting R82 as a nonchemical alternative in the control of some plant pathogenic fungi.


Subject(s)
Antibiosis , Antifungal Agents/metabolism , Ascomycota/growth & development , Food Preservation/methods , Penicillium/physiology , Antifungal Agents/pharmacology , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Colony Count, Microbial , Consumer Product Safety , Food Contamination/analysis , Microbial Sensitivity Tests , Mycelium/drug effects , Penicillium/metabolism , Spores, Fungal/drug effects
19.
J Biosci Bioeng ; 108(4): 282-5, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19716515

ABSTRACT

The mustard trypsin inhibitor 2, MTI2, was expressed in Escherichia coli. A specific procedure for its production and purification is described. The recombinant protein was recovered by protein extraction from the insoluble fraction, then renatured and purified by ion exchange and gel filtration chromatography. Finally, the inhibitory activity against trypsin was also determined.


Subject(s)
Plant Proteins/genetics , Base Sequence , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Genetic Vectors , Molecular Sequence Data , Mustard Plant/genetics , Mustard Plant/physiology , Plant Proteins/isolation & purification , Protein Renaturation , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Restriction Mapping , Seeds/physiology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL