Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 115(26): 6774-6779, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29895688

ABSTRACT

The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals' genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (∼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (∼9,000 BCE) and Pre-Pottery Neolithic farmers (∼6,500 BCE). Late Neolithic (∼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia ∼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.


Subject(s)
Ethnicity/genetics , Genome, Human , Human Migration/history , Africa, Northern , Agriculture/history , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Ethnicity/history , Europe , Gene Flow , Gene Library , Genetics, Population , History, Ancient , Humans , Middle East , Morocco , Sequence Analysis, DNA , Spain/ethnology
2.
Am J Hum Genet ; 99(1): 163-73, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27392075

ABSTRACT

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.


Subject(s)
Chromosomes, Human, Y/genetics , Haplotypes/genetics , Language , Asia , Europe , Humans , Phylogeography , Time Factors
3.
PLoS Genet ; 10(5): e1004353, 2014 May.
Article in English | MEDLINE | ID: mdl-24809476

ABSTRACT

Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.


Subject(s)
Fossils , Genetics, Population , Genome, Human , Europe , Female , Humans , Polymorphism, Single Nucleotide
4.
Proc Natl Acad Sci U S A ; 108(13): 5154-62, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21383195

ABSTRACT

Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by F(ST), in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world.


Subject(s)
Biological Evolution , Black People/genetics , Genetic Variation , Genetics, Population , Polymorphism, Single Nucleotide , Africa , Culture , Ethnicity/genetics , Genome, Human , Humans , Linkage Disequilibrium
5.
Mol Biol Evol ; 29(1): 359-65, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21917723

ABSTRACT

The Caucasus, inhabited by modern humans since the Early Upper Paleolithic and known for its linguistic diversity, is considered to be important for understanding human dispersals and genetic diversity in Eurasia. We report a synthesis of autosomal, Y chromosome, and mitochondrial DNA (mtDNA) variation in populations from all major subregions and linguistic phyla of the area. Autosomal genome variation in the Caucasus reveals significant genetic uniformity among its ethnically and linguistically diverse populations and is consistent with predominantly Near/Middle Eastern origin of the Caucasians, with minor external impacts. In contrast to autosomal and mtDNA variation, signals of regional Y chromosome founder effects distinguish the eastern from western North Caucasians. Genetic discontinuity between the North Caucasus and the East European Plain contrasts with continuity through Anatolia and the Balkans, suggesting major routes of ancient gene flows and admixture.


Subject(s)
Emigration and Immigration/history , Gene Flow , Algorithms , Anthropology, Physical , Asian People/genetics , Chromosomes, Human, Y , Cluster Analysis , DNA , DNA, Mitochondrial/genetics , Genetics, Population , History, Ancient , Humans , Linguistics , Transcaucasia , White People/genetics
6.
Hum Biol ; 85(6): 825-58, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25079122

ABSTRACT

The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quadrupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722-720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.


Subject(s)
Chromosomes, Human, Y/genetics , Jews/genetics , Microsatellite Repeats/genetics , Genetic Variation/genetics , Genetics, Population , Genotype , History, Ancient , Humans , Israel/ethnology , Jews/history , Male , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Electrospray Ionization
7.
Am J Phys Anthropol ; 148(3): 395-405, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22576278

ABSTRACT

The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.


Subject(s)
Chromosomes, Human, Y , Indians, North American/genetics , Americas , Genetic Variation , Haplotypes/genetics , Humans , Indians, North American/statistics & numerical data , Male , Mexico , Microsatellite Repeats , Phylogeny
8.
Proc Natl Acad Sci U S A ; 106(48): 20174-9, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19920170

ABSTRACT

The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.


Subject(s)
Chromosomes, Human, Y/genetics , Cultural Evolution , Genetic Drift , Genetic Variation , Genetics, Population , Population Dynamics , Founder Effect , Haplotypes/genetics , Humans , Phylogeny , Selection, Genetic
9.
BMC Evol Biol ; 11: 69, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21401952

ABSTRACT

BACKGROUND: The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6th century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica). RESULTS: 19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population. CONCLUSIONS: Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.


Subject(s)
Chromosomes, Human, Y/genetics , Genetics, Population , France , Greece , Haplotypes , Humans , Male , Mediterranean Region , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Mol Biol Evol ; 27(3): 714-25, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19812029

ABSTRACT

Different X-homologous regions of the male-specific portion of the human Y chromosome (MSY) are characterized by a different content of putative single nucleotide polymorphisms (SNPs), as reported in public databases. The possible role of X-to-Y nonallelic gene conversion in contributing to these differences remains poorly understood. We explored this issue by analyzing sequence variation in three regions of the MSY characterized by a different degree of X-Y similarity and a different density of putative SNPs: the PCDH11Y gene in the X-transposed (X-Y identity 99%, high putative SNP content); the TBL1Y gene in the X-degenerate (X-Y identity 86-88%, low putative SNP content); and VCY genes-containing region in the P8 palindrome (X-Y identity 95%, low putative SNP content). Present findings do not provide any evidence for gene conversion in the PCDH11Y and TBL1Y genes; they also strongly suggest that most putative SNPs of the PCDH11Y gene (and possibly the entire X-transposed region) are most likely X-Y paralogous sequence variants, which have been entered in the databases as SNPs. On the other hand, clear evidence for the VCY genes in the P8 palindrome having acted as an acceptor of X-to-Y gene conversion was obtained. A rate of 1.8 x 10(-7) X-to-Y conversions/bp/year was estimated for these genes. These findings indicate that in the VCY region of the MSY, X-to-Y gene conversion can be highly effective to increase the level of diversity among human Y chromosomes and suggest an additional explanation for the ability of the Y chromosome to retard degradation during evolution. Present data are expected to pave the way for future investigations on the role of nonallelic gene conversion in double-strand break repair and the maintenance of Y chromosome integrity.


Subject(s)
Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , DNA Mutational Analysis/methods , Evolution, Molecular , Gene Conversion , Cadherins/genetics , Chromosomes, Human, X/chemistry , Chromosomes, Human, Y/chemistry , Humans , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Protocadherins , Sequence Homology, Nucleic Acid , Transducin/genetics
11.
Proc Natl Acad Sci U S A ; 105(31): 10693-8, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18678889

ABSTRACT

Although geneticists have extensively debated the mode by which agriculture diffused from the Near East to Europe, they have not directly examined similar agropastoral diffusions in Africa. It is unclear, for example, whether early instances of sheep, cows, pottery, and other traits of the pastoralist package were transmitted to southern Africa by demic or cultural diffusion. Here, we report a newly discovered Y-chromosome-specific polymorphism that defines haplogroup E3b1f-M293. This polymorphism reveals the monophyletic relationship of the majority of haplotypes of a previously paraphyletic clade, E3b1-M35*, that is widespread in Africa and southern Europe. To elucidate the history of the E3b1f haplogroup, we analyzed this haplogroup in 13 populations from southern and eastern Africa. The geographic distribution of the E3b1f haplogroup, in association with the microsatellite diversity estimates for populations, is consistent with an expansion through Tanzania to southern-central Africa. The data suggest this dispersal was independent of the migration of Bantu-speaking peoples along a similar route. Instead, the phylogeography and microsatellite diversity of the E3b1f lineage correlate with the arrival of the pastoralist economy in southern Africa. Our Y-chromosomal evidence supports a demic diffusion model of pastoralism from eastern to southern Africa approximately 2,000 years ago.


Subject(s)
Agriculture/history , Chromosomes, Human, Y/genetics , Demography , Emigration and Immigration/history , Genetics, Population , Chromatography, High Pressure Liquid , Genotype , Haplotypes/genetics , History, Ancient , Humans , Male , Microsatellite Repeats/genetics , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Tanzania
12.
Croat Med J ; 52(3): 225-34, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21674820

ABSTRACT

The aim of this article is to offer a concise interpretation of the scientific data about the topic of Croatian genetic heritage that was obtained over the past 10 years. We made a short overview of previously published articles by our and other groups, based mostly on Y-chromosome results. The data demonstrate that Croatian human population, as almost any other European population, represents remarkable genetic mixture. More than 3/4 of the contemporary Croatian men are most probably the offspring of Old Europeans who came here before and after the Last Glacial Maximum. The rest of the population is the offspring of the people who were arriving in this part of Europe through the southeastern route in the last 10,000 years, mostly during the neolithization process. We believe that the latest discoveries made with the techniques for whole-genome typing using the array technology, will help us understand the structure of Croatian population in more detail, as well as the aspects of its demographic history.


Subject(s)
Chromosomes, Human, Y/genetics , Genetics, Population/statistics & numerical data , Haplotypes/genetics , Agriculture , Croatia , DNA, Mitochondrial/genetics , Ethnicity , Europe , Humans , Male , Molecular Biology , Mutation , Phylogeography
13.
Eur J Hum Genet ; 29(1): 164-172, 2021 01.
Article in English | MEDLINE | ID: mdl-32636469

ABSTRACT

We set out to identify the origins of the Árpád Dynasty based on genome sequencing of DNA derived from the skeletal remains of Hungarian King Béla III (1172-1196) and eight additional individuals (six males, two females) originally interred at the Royal Basilica of Székesfehérvár. Y-chromosome analysis established that two individuals, Béla III and HU52 assign to haplogroups R-Z2125 whose distribution centres near South Central Asia with subsidiary expansions in the regions of modern Iran, the Volga Ural region and the Caucasus. Out of a cohort of 4340 individuals from these geographic areas, we acquired whole-genome data from 208 individuals derived for the R-Z2123 haplogroup. From these data we have established that the closest living kin of the Árpád Dynasty are R-SUR51 derived modern day Bashkirs predominantly from the Burzyansky and Abzelilovsky districts of Bashkortostan in the Russian Federation. Our analysis also reveals the existence of SNPs defining a novel Árpád Dynasty specific haplogroup R-ARP. Framed within the context of a high resolution R-Z2123 phylogeny, the ancestry of the first Hungarian royal dynasty traces to the region centering near Northern Afghanistan about 4500 years ago and identifies the Bashkirs as their closest kin, with a separation date between the two populations at the beginning of the first millennium CE.


Subject(s)
Chromosomes, Human, Y/genetics , Famous Persons , Pedigree , Phylogeny , Polymorphism, Single Nucleotide , Female , Human Migration , Humans , Hungary , Male , Sequence Analysis, DNA/methods
14.
BMC Genet ; 10: 59, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19772609

ABSTRACT

BACKGROUND: Human origins and migration models proposing the Horn of Africa as a prehistoric exit route to Asia have stimulated molecular genetic studies in the region using uniparental loci. However, from a Y-chromosome perspective, Saudi Arabia, the largest country of the region, has not yet been surveyed. To address this gap, a sample of 157 Saudi males was analyzed at high resolution using 67 Y-chromosome binary markers. In addition, haplotypic diversity for its most prominent J1-M267 lineage was estimated using a set of 17 Y-specific STR loci. RESULTS: Saudi Arabia differentiates from other Arabian Peninsula countries by a higher presence of J2-M172 lineages. It is significantly different from Yemen mainly due to a comparative reduction of sub-Saharan Africa E1-M123 and Levantine J1-M267 male lineages. Around 14% of the Saudi Arabia Y-chromosome pool is typical of African biogeographic ancestry, 17% arrived to the area from the East across Iran, while the remainder 69% could be considered of direct or indirect Levantine ascription. Interestingly, basal E-M96* (n = 2) and J-M304* (n = 3) lineages have been detected, for the first time, in the Arabian Peninsula. Coalescence time for the most prominent J1-M267 haplogroup in Saudi Arabia (11.6 +/- 1.9 ky) is similar to that obtained previously for Yemen (11.3 +/- 2) but significantly older that those estimated for Qatar (7.3 +/- 1.8) and UAE (6.8 +/- 1.5). CONCLUSION: The Y-chromosome genetic structure of the Arabian Peninsula seems to be mainly modulated by geography. The data confirm that this area has mainly been a recipient of gene flow from its African and Asian surrounding areas, probably mainly since the last Glacial maximum onwards. Although rare deep rooting lineages for Y-chromosome haplogroups E and J have been detected, the presence of more basal clades supportive of the southern exit route of modern humans to Eurasian, were not found.


Subject(s)
Black People/genetics , Chromosomes, Human, Y/genetics , Genetics, Population , Emigration and Immigration , Evolution, Molecular , Gene Flow , Geography , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Saudi Arabia , Sequence Analysis, DNA
15.
Croat Med J ; 50(3): 239-49, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19480020

ABSTRACT

AIM: To determine the human Y-chromosome haplogroup backgrounds of intermediate-sized variant alleles displayed by short tandem repeat (STR) loci DYS392, DYS449, and DYS385, and to evaluate the potential of each intermediate variant to elucidate new phylogenetic substructure within the human Y-chromosome haplogroup tree. METHODS: Molecular characterization of lineages was achieved using a combination of Y-chromosome haplogroup defining binary polymorphisms and up to 37 short tandem repeat loci. DNA sequencing and median-joining network analyses were used to evaluate Y-chromosome lineages displaying intermediate variant alleles. RESULTS: We show that DYS392.2 occurs on a single haplogroup background, specifically I1*-M253, and likely represents a new phylogenetic subdivision in this European haplogroup. Intermediate variants DYS449.2 and DYS385.2 both occur on multiple haplogroup backgrounds, and when evaluated within specific haplogroup contexts, delineate new phylogenetic substructure, with DYS449.2 being informative within haplogroup A-P97 and DYS385.2 in haplogroups D-M145, E1b1a-M2, and R1b*-M343. Sequence analysis of variant alleles observed within the various haplogroup backgrounds showed that the nature of the intermediate variant differed, confirming the mutations arose independently. CONCLUSIONS: Y-chromosome short tandem repeat intermediate variant alleles, while relatively rare, typically occur on multiple haplogroup backgrounds. This distribution indicates that such mutations arise at a rate generally intermediate to those of binary markers and STR loci. As a result, intermediate-sized Y-STR variants can reveal phylogenetic substructure within the Y-chromosome phylogeny not currently detected by either binary or Y-STR markers alone, but only when such variants are evaluated within a haplogroup context.


Subject(s)
Chromosomes, Human, Y/genetics , Microsatellite Repeats/genetics , Phylogeny , Haplotypes , Humans , Sequence Analysis, DNA
16.
Eur J Hum Genet ; 27(1): 125-132, 2019 01.
Article in English | MEDLINE | ID: mdl-30143806

ABSTRACT

Red cell polymorphisms can provide evidence of human migration and adaptation patterns. In Eurasia, the distribution of Diego blood group system polymorphisms remains unaddressed. To shed light on the dispersal of the Dia antigen, we performed analyses of correlations between the frequencies of DI*01 allele, C2-M217 and C2-M401 Y-chromosome haplotypes ascribed as being of Mongolian-origin and language affiliations, in 75 Eurasian populations including DI*01 frequency data from the HGDP-CEPH panel. We revealed that DI*01 reaches its highest frequency in Mongolia, Turkmenistan and Kyrgyzstan, expanding southward and westward across Asia with Altaic-speaking nomadic carriers of C2-M217, and even more precisely C2-M401, from their homeland presumably in Mongolia, between the third century BCE and the thirteenth century CE. The present study has highlighted the gene-culture co-migration with the demographic movements that occurred during the past two millennia in Central and East Asia. Additionally, this work contributes to a better understanding of the distribution of immunogenic erythrocyte polymorphisms with a view to improve transfusion safety.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/genetics , Asian People/genetics , Human Migration , Polymorphism, Genetic , Asia , Chromosomes, Human, Y/genetics , Female , Haplotypes , Humans , Male
17.
Eur J Hum Genet ; 16(3): 374-86, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17928816

ABSTRACT

Arabia has served as a strategic crossroads for human disseminations, providing a natural connection between the distant populations of China and India in the east to the western civilizations along the Mediterranean. To explore this region's critical role in the migratory episodes leaving Africa to Eurasia and back, high-resolution Y-chromosome analysis of males from the United Arab Emirates (164), Qatar (72) and Yemen (62) was performed. The role of the Levant in the Neolithic dispersal of the E3b1-M35 sublineages is supported by the data, and the distribution and STR-based analyses of J1-M267 representatives points to their spread from the north, most likely during the Neolithic. With the exception of Yemen, southern Arabia, South Iran and South Pakistan display high diversity in their Y-haplogroup substructure possibly a result of gene flow along the coastal crescent-shaped corridor of the Gulf of Oman facilitating human dispersals. Elevated rates of consanguinity may have had an impact in Yemen and Qatar, which experience significant heterozygote deficiencies at various hypervariable autosomal STR loci.


Subject(s)
Chromosomes, Human, Y , Haplotypes , Humans , Male , Microsatellite Repeats , Phylogeny , Qatar , United Arab Emirates , Yemen
18.
Am J Phys Anthropol ; 137(3): 316-23, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18618658

ABSTRACT

We study the major levels of Y-chromosome haplogroup variation in 15 Sudanese populations by typing major Y-haplogroups in 445 unrelated males representing the three linguistic families in Sudan. Our analysis shows Sudanese populations fall into haplogroups A, B, E, F, I, J, K, and R in frequencies of 16.9, 7.9, 34.4, 3.1, 1.3, 22.5, 0.9, and 13% respectively. Haplogroups A, B, and E occur mainly in Nilo-Saharan speaking groups including Nilotics, Fur, Borgu, and Masalit; whereas haplogroups F, I, J, K, and R are more frequent among Afro-Asiatic speaking groups including Arabs, Beja, Copts, and Hausa, and Niger-Congo speakers from the Fulani ethnic group. Mantel tests reveal a strong correlation between genetic and linguistic structures (r = 0.31, P = 0.007), and a similar correlation between genetic and geographic distances (r = 0.29, P = 0.025) that appears after removing nomadic pastoralists of no known geographic locality from the analysis. The bulk of genetic diversity appears to be a consequence of recent migrations and demographic events mainly from Asia and Europe, evident in a higher migration rate for speakers of Afro-Asiatic as compared with the Nilo-Saharan family of languages, and a generally higher effective population size for the former. The data provide insights not only into the history of the Nile Valley, but also in part to the history of Africa and the area of the Sahel.


Subject(s)
Black People/genetics , Chromosomes, Human, Y/chemistry , Gene Flow , Genetic Variation , Geography , Language , Genetic Markers , Haplotypes , Humans , Male , Phylogeny , Population Density , Population Dynamics , Social Isolation , Sudan
19.
Eur J Hum Genet ; 15(1): 121-6, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17047675

ABSTRACT

Three Pakistani populations residing in northern Pakistan, the Burusho, Kalash and Pathan claim descent from Greek soldiers associated with Alexander's invasion of southwest Asia. Earlier studies have excluded a substantial Greek genetic input into these populations, but left open the question of a smaller contribution. We have now typed 90 binary polymorphisms and 16 multiallelic, short-tandem-repeat (STR) loci mapping to the male-specific portion of the human Y chromosome in 952 males, including 77 Greeks in order to re-investigate this question. In pairwise comparisons between the Greeks and the three Pakistani populations using genetic distance measures sensitive to recent events, the lowest distances were observed between the Greeks and the Pathans. Clade E3b1 lineages, which were frequent in the Greeks but not in Pakistan, were nevertheless observed in two Pathan individuals, one of whom shared a 16 Y-STR haplotype with the Greeks. The worldwide distribution of a shortened (9 Y-STR) version of this haplotype, determined from database information, was concentrated in Macedonia and Greece, suggesting an origin there. Although based on only a few unrelated descendants, this provides strong evidence for a European origin for a small proportion of the Pathan Y chromosomes.


Subject(s)
Chromosomes, Human, Y , Ethnicity/genetics , Cell Line , Genetics, Population , Greece/ethnology , Haplotypes , Humans , Male , Microsatellite Repeats , Pakistan
20.
Eur J Hum Genet ; 15(11): 1183-5, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17700630

ABSTRACT

The Sahel that extends from the Atlantic Ocean to the Ethiopian highland is a historical reservoir of Africa's cultures and grandest populations and a known arena of ancient and recent migrations. We are interested in the issue whether such migrations were also carriers of genetic traits and whether this introgression could be associated with population genetic markers. Based on analysis of Y-chromosome haplogroups, we present evidence that the sickle gene, one of the major protective polymorphisms known in malaria, has in fact found its way only recently to the gene pool of the populations in eastern Sahel. We discuss the possible dynamics of the process and give estimates of the age of the introduction of the S allele into eastern Sahel.


Subject(s)
Anemia, Sickle Cell/genetics , Chromosomes, Human, Y/genetics , Emigration and Immigration , Haplotypes/genetics , Hemoglobin, Sickle/genetics , Africa, Northern , Anemia, Sickle Cell/blood , Case-Control Studies , Gene Frequency , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL