Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Biophys J ; 123(2): 172-183, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38071428

ABSTRACT

Heat shock protein 90 (Hsp90) serves as a crucial regulator of cellular proteostasis by stabilizing and regulating the activity of numerous substrates, many of which are oncogenic proteins. Therefore, Hsp90 is a drug target for cancer therapy. Hsp90 comprises three structural domains, a highly conserved amino-terminal domain (NTD), a middle domain (MD), and a carboxyl-terminal domain (CTD). The CTD is responsible for protein dimerization, is crucial for Hsp90's activity, and has therefore been targeted for inhibiting Hsp90. Here we addressed the question of whether the CTD dimerization in Hsp90, in the absence of bound nucleotides, is modulated by allosteric effects from the other domains. We studied full length (FL) and isolated CTD (isoC) yeast Hsp90 spin-labeled with a Gd(III) tag by double electron-electron resonance measurements to track structural differences and to determine the apparent dissociation constant (Kd). We found the distance distributions for both the FL and isoC to be similar, indicating that the removal of the NTD and MD does not significantly affect the structure of the CTD dimer. The low-temperature double electron-electron resonance-derived Kd values, as well as those obtained at room temperature using microscale thermophoresis and native mass spectrometry, collectively suggested the presence of some allosteric effects from the NTDs and MDs on the CTD dimerization stability in the apo state. This was evidenced by a moderate increase in the Kd for the isoC compared with the FL mutants. Our results reveal a fine regulation of the CTD dimerization by allosteric modulation, which may have implications for drug targeting strategies in cancer therapy.


Subject(s)
Neoplasms , Saccharomyces cerevisiae , Humans , Dimerization , Saccharomyces cerevisiae/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein Multimerization , Protein Binding
2.
Mol Cell ; 63(2): 337-346, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27425410

ABSTRACT

Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.


Subject(s)
Acetylcholinesterase/metabolism , Computational Biology/methods , Escherichia coli/enzymology , Protein Engineering/methods , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Algorithms , Automation, Laboratory , Computer Simulation , Computer-Aided Design , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Escherichia coli/genetics , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Mutation , Phosphoric Triester Hydrolases/genetics , Phosphoric Triester Hydrolases/metabolism , Protein Conformation , Protein Denaturation , Protein Stability , Sirtuins/genetics , Sirtuins/metabolism , Structure-Activity Relationship , Temperature
3.
Proc Natl Acad Sci U S A ; 117(1): 395-404, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31862713

ABSTRACT

Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.


Subject(s)
Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein Domains/genetics , Yeasts/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Electron Spin Resonance Spectroscopy , Fungal Proteins/chemistry , Fungal Proteins/genetics , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Manganese/chemistry , Models, Molecular , Mutation , Spin Labels , Yeasts/genetics
4.
New Phytol ; 234(4): 1394-1410, 2022 05.
Article in English | MEDLINE | ID: mdl-35238413

ABSTRACT

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Subject(s)
Alkaloids , Dioxygenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alkaloids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Solanum lycopersicum/genetics , Solanum/genetics , Solanum/metabolism , Solanum tuberosum/genetics
7.
Proc Natl Acad Sci U S A ; 115(23): E5419-E5428, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784829

ABSTRACT

Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3ß-hydroxysteroid dehydrogenase/Δ5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.


Subject(s)
Alkaloids/biosynthesis , Saponins/biosynthesis , Solanaceae/chemistry , Alkaloids/chemistry , Gene Expression Regulation, Plant/genetics , Glycosides/biosynthesis , Glycosides/chemistry , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Oxidoreductases/metabolism , Plant Extracts/chemistry , Plants, Genetically Modified/metabolism , Saponins/chemistry , Saponins/metabolism , Solanaceae/metabolism , Steroids/chemistry , Tomatine/analogs & derivatives , Tomatine/metabolism
8.
J Am Chem Soc ; 142(27): 11734-11742, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32369353

ABSTRACT

Proteolysis targeting chimeras (PROTACs) represent an exciting inhibitory modality with many advantages, including substoichiometric degradation of targets. Their scope, though, is still limited to date by the requirement for a sufficiently potent target binder. A solution that proved useful in tackling challenging targets is the use of electrophiles to allow irreversible binding to the target. However, such binding will negate the catalytic nature of PROTACs. Reversible covalent PROTACs potentially offer the best of both worlds. They possess the potency and selectivity associated with the formation of the covalent bond, while being able to dissociate and regenerate once the protein target is degraded. Using Bruton's tyrosine kinase (BTK) as a clinically relevant model system, we show efficient degradation by noncovalent, irreversible covalent, and reversible covalent PROTACs, with <10 nM DC50's and >85% degradation. Our data suggest that part of the degradation by our irreversible covalent PROTACs is driven by reversible binding prior to covalent bond formation, while the reversible covalent PROTACs drive degradation primarily by covalent engagement. The PROTACs showed enhanced inhibition of B cell activation compared to ibrutinib and exhibit potent degradation of BTK in patient-derived primary chronic lymphocytic leukemia cells. The most potent reversible covalent PROTAC, RC-3, exhibited enhanced selectivity toward BTK compared to noncovalent and irreversible covalent PROTACs. These compounds may pave the way for the design of covalent PROTACs for a wide variety of challenging targets.

9.
Plant Cell ; 29(4): 681-696, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28389586

ABSTRACT

Enlargement and doming of the shoot apical meristem (SAM) is a hallmark of the transition from vegetative growth to flowering. While this change is widespread, its role in the flowering process is unknown. The late termination (ltm) tomato (Solanum lycopersicum) mutant shows severely delayed flowering and precocious doming of the vegetative SAM LTM encodes a kelch domain-containing protein, with no link to known meristem maintenance or flowering time pathways. LTM interacts with the TOPLESS corepressor and with several transcription factors that can provide specificity for its functions. A subgroup of flowering-associated genes is precociously upregulated in vegetative stages of ltm SAMs, among them, the antiflorigen gene SELF PRUNING (SP). A mutation in SP restored the structure of vegetative SAMs in ltm sp double mutants, and late flowering was partially suppressed, suggesting that LTM functions to suppress SP in the vegetative SAM In agreement, SP-overexpressing wild-type plants exhibited precocious doming of vegetative SAMs combined with late flowering, as found in ltm plants. Strong flowering signals can result in termination of the SAM, usually by its differentiation into a flower. We propose that activation of a floral antagonist that promotes SAM growth in concert with floral transition protects it from such terminating effects.


Subject(s)
Flowers/cytology , Flowers/metabolism , Kelch Repeat/physiology , Meristem/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Kelch Repeat/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Meristem/genetics , Meristem/physiology , Mutation , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
PLoS Comput Biol ; 15(8): e1007207, 2019 08.
Article in English | MEDLINE | ID: mdl-31442220

ABSTRACT

Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.


Subject(s)
Antibody Affinity , Drug Design , Immunoglobulin Variable Region/genetics , Protein Engineering/methods , Animals , Antibody Affinity/genetics , Computational Biology , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Oxidoreductases Acting on Sulfur Group Donors/immunology , Peptide Library , Protein Engineering/statistics & numerical data , Protein Stability , Software , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology
11.
Proc Natl Acad Sci U S A ; 114(41): 10900-10905, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973872

ABSTRACT

Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called "ideal" folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, often demands nonideal features, including large and irregular loops and buried polar interaction networks, which have remained challenging for fold design. Through five design/experiment cycles, we learned principles for designing stable and functional antibody variable fragments (Fvs). Specifically, we (i) used sequence-design constraints derived from antibody multiple-sequence alignments, and (ii) during backbone design, maintained stabilizing interactions observed in natural antibodies between the framework and loops of complementarity-determining regions (CDRs) 1 and 2. Designed Fvs bound their ligands with midnanomolar affinities and were as stable as natural antibodies, despite having >30 mutations from mammalian antibody germlines. Furthermore, crystallographic analysis demonstrated atomic accuracy throughout the framework and in four of six CDRs in one design and atomic accuracy in the entire Fv in another. The principles we learned are general, and can be implemented to design other nonideal folds, generating stable, specific, and precise antibodies and enzymes.


Subject(s)
Acyl-Carrier Protein S-Acetyltransferase/metabolism , Antibodies/chemistry , Antibodies/metabolism , Immunoglobulin Fragments/metabolism , Insulin/metabolism , Acyl-Carrier Protein S-Acetyltransferase/immunology , Antibodies/immunology , Binding Sites, Antibody , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Complementarity Determining Regions/metabolism , Crystallography, X-Ray , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/immunology , Insulin/immunology , Ligands , Models, Molecular , Mycobacterium tuberculosis/enzymology , Protein Conformation
12.
PLoS Pathog ; 13(8): e1006562, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28850602

ABSTRACT

A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle.


Subject(s)
Chlorella/virology , DNA Virus Infections , Host-Parasite Interactions/physiology , Phycodnaviridae/physiology , Virus Assembly/physiology , DNA, Viral/physiology , Fluorescent Antibody Technique , Imaging, Three-Dimensional , Microscopy, Electron, Transmission , Phycodnaviridae/ultrastructure , Polymerase Chain Reaction
13.
Chemphyschem ; 20(14): 1860-1868, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31054266

ABSTRACT

It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.


Subject(s)
Calmodulin/chemistry , Calmodulin/metabolism , Calmodulin/genetics , Cell Extracts/chemistry , Electron Spin Resonance Spectroscopy/methods , Gadolinium/chemistry , HeLa Cells , Humans , Mutation , Protein Conformation , Spin Labels
14.
Mol Cell ; 42(2): 250-60, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21458342

ABSTRACT

The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.


Subject(s)
Computer-Aided Design , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Proteins/chemistry , Binding Sites , Chemistry Techniques, Analytical , Models, Molecular , Molecular Weight , Mutation , Protein Binding , Protein Conformation , Protein Multimerization , Proteins/genetics , Proteins/metabolism , Surface Properties
15.
J Biol Chem ; 292(50): 20583-20591, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29066625

ABSTRACT

The GroE chaperonin system in Escherichia coli comprises GroEL and GroES and facilitates ATP-dependent protein folding in vivo and in vitro Proteins with very similar sequences and structures can differ in their dependence on GroEL for efficient folding. One potential but unverified source for GroEL dependence is frustration, wherein not all interactions in the native state are optimized energetically, thereby potentiating slow folding and misfolding. Here, we chose enhanced green fluorescent protein as a model system and subjected it to random mutagenesis, followed by screening for variants whose in vivo folding displays increased or decreased GroEL dependence. We confirmed the altered GroEL dependence of these variants with in vitro folding assays. Strikingly, mutations at positions predicted to be highly frustrated were found to correlate with decreased GroEL dependence. Conversely, mutations at positions with low frustration were found to correlate with increased GroEL dependence. Further support for this finding was obtained by showing that folding of an enhanced green fluorescent protein variant designed computationally to have reduced frustration is indeed less GroEL-dependent. Our results indicate that changes in local frustration also affect partitioning in vivo between spontaneous and chaperonin-mediated folding. Hence, the design of minimally frustrated sequences can reduce chaperonin dependence and improve protein expression levels.


Subject(s)
Chaperonin 10/chemistry , Chaperonin 60/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Green Fluorescent Proteins/chemistry , Heat-Shock Proteins/chemistry , Models, Molecular , Amino Acid Substitution , Chaperonin 10/genetics , Chaperonin 10/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Computational Biology , Crystallography, X-Ray , Databases, Protein , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Kinetics , Mutation , Protein Conformation , Protein Engineering , Protein Folding , Protein Refolding , Protein Stability , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Structural Homology, Protein
18.
Chembiochem ; 16(10): 1415-9, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-25930950

ABSTRACT

We have developed a collagen-mRNA platform for controllable protein production that is intended to be less prone to the problems associated with commonly used mRNA therapy as well as with collagen skin-healing procedures. A collagen mimic was constructed according to a recombinant method and was used as scaffold for translating mRNA chains into proteins. Cysteines were genetically inserted into the collagen chain at positions allowing efficient ribosome translation activity while minimizing mRNA misfolding and degradation. Enhanced green fluorescence protein (eGFP) mRNA bound to collagen was successfully translated by cell-free Escherichia coli ribosomes. This system enabled an accurate control of specific protein synthesis by monitoring expression time and level. Luciferase-mRNA was also translated on collagen scaffold by eukaryotic cell extracts. Thus we have demonstrated the feasibility of controllable protein synthesis on collagen scaffolds by ribosomal machinery.


Subject(s)
Cell-Free System , Collagen/genetics , Protein Biosynthesis , RNA, Messenger/genetics , Cell-Free System/metabolism , Collagen/chemistry , Escherichia coli/genetics , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Luciferases/analysis , Luciferases/genetics , Luminescent Agents/analysis , Luminescent Agents/metabolism , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Protein Multimerization , Protein Stability , RNA, Messenger/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
19.
Chem Sci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39149216

ABSTRACT

As a result of calcium ion binding, the calcium-dependent regulatory protein calmodulin (CaM) undergoes a conformational change, enabling it to bind to and activate a variety of enzymes. However, the detoxification enzyme glutathione S-transferase (GST) is notably not among the enzymes activated by CaM. In this study, we demonstrate the feasibility of establishing, in vitro, an artificial regulatory link between CaM and GST using bifunctional chemical transducer (CT) molecules possessing binders for CaM and GST. We show that the CTs convert the constitutively active GST into a triggerable enzyme whose activity is unnaturally regulated by the CaM conformational state and consequently, by the level of calcium ions. The ability to reconfigure the regulatory function of CaM demonstrates a novel mode by which CTs could be employed to mediate artificial protein crosstalk, as well as a new means to achieve artificial control of enzyme activity by modulating the coordination of metal ions. Within this study, we also investigated the impact of covalent interaction between the CTs and the enzyme target. This investigation offers further insights into the mechanisms governing the function of CTs and the possibility of rendering them isoform specific.

20.
Mol Ther Methods Clin Dev ; 32(3): 101300, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39211733

ABSTRACT

Tay-Sachs (TS) disease is a neurodegenerative disease resulting from mutations in the gene encoding the α-subunit (HEXA) of lysosomal ß-hexosaminidase A (HexA). We report that (1) recombinant HEXA alone increased HexA activity and decreased GM2 content in human TS glial cells and peripheral mononuclear blood cells; 2) a recombinant chimeric protein composed of HEXA linked to two blood-brain barrier (BBB) entry elements, a transferrin receptor binding sequence and granulocyte-colony stimulating factor, associates with HEXB in vitro; reaches human cultured TS cells lysosomes and mouse brain cells, especially neurons, in vivo; lowers GM2 in cultured human TS cells; lowers whole brain GM2 concentration by approximately 40% within 6 weeks, when injected intravenously (IV) to adult TS-mutant mice mimicking the slow course of late-onset TS; and increases forelimbs grip strength. Hence, a chimeric protein equipped with dual BBB entry elements can transport a large protein such as HEXA to the brain, decrease the accumulation of GM2, and improve muscle strength, thereby providing potential treatment for late-onset TS.

SELECTION OF CITATIONS
SEARCH DETAIL