Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Circ Res ; 128(4): 474-491, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33353368

ABSTRACT

RATIONALE: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear. OBJECTIVE: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis. METHODS AND RESULTS: SIRT6 protein, but not mRNA, expression was markedly reduced in VSMCs in human and mouse atherosclerotic plaques, and in human VSMCs derived from plaques or undergoing replicative or palmitate-induced senescence versus healthy aortic VSMCs. The ubiquitin ligase CHIP (C terminus of HSC70-interacting protein) promoted SIRT6 stability, but CHIP expression was reduced in human and mouse plaque VSMCs and by palmitate in a p38- and c-Jun N-terminal kinase-dependent manner. SIRT6 bound to telomeres, while SIRT6 inhibition using shRNA or a deacetylase-inactive mutant (SIRT6H133Y) shortened human VSMC lifespan and induced senescence, associated with telomeric H3K9 (histone H3 lysine 9) hyperacetylation and 53BP1 (p53 binding protein 1) binding, indicative of telomere damage. In contrast, SIRT6 overexpression preserved telomere integrity, delayed cellular senescence, and reduced inflammatory cytokine expression and changes in VSMC metabolism associated with senescence. SIRT6, but not SIRT6H133Y, promoted proliferation and lifespan of mouse VSMCs, and prevented senescence-associated metabolic changes. ApoE-/- (apolipoprotein E) mice were generated that overexpress SIRT6 or SIRT6H133Y in VSMCs only. SM22α-hSIRT6/ApoE-/- mice had reduced atherosclerosis, markers of senescence and inflammation compared with littermate controls, while plaques of SM22α-hSIRT6H133Y/ApoE-/- mice showed increased features of plaque instability. CONCLUSIONS: SIRT6 protein expression is reduced in human and mouse plaque VSMCs and is positively regulated by CHIP. SIRT6 regulates telomere maintenance and VSMC lifespan and inhibits atherogenesis, all dependent on its deacetylase activity. Our data show that endogenous SIRT6 deacetylase is an important and unrecognized inhibitor of VSMC senescence and atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Cellular Senescence , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Sirtuins/metabolism , Animals , Aorta/cytology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cells, Cultured , Cytokines/metabolism , Histones/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Sirtuins/genetics , Telomere Homeostasis , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630703

ABSTRACT

Voltage-gated potassium channels of the Kv1.3 type are considered a potential new molecular target in several pathologies, including some cancer disorders and COVID-19. Lipophilic non-toxic organic inhibitors of Kv1.3 channels, such as statins and flavonoids, may have clinical applications in supporting the therapy of some cancer diseases, such as breast, pancreas, and lung cancer; melanoma; or chronic lymphocytic leukemia. This study focuses on the influence of the co-application of statins-simvastatin (SIM) or mevastatin (MEV)-with flavonoids 8-prenylnaringenin (8-PN), 6-prenylnarigenin (6-PN), xanthohumol (XANT), acacetin (ACAC), or chrysin on the activity of Kv1.3 channels, viability, and the apoptosis of cancer cells in the human T cell line Jurkat. We showed that the inhibitory effect of co-application of the statins with flavonoids was significantly more potent than the effects exerted by each compound applied alone. Combinations of simvastatin with chrysin, as well as mevastatin with 8-prenylnaringenin, seem to be the most promising. We also found that these results correlate with an increased ability of the statin-flavonoid combination to reduce viability and induce apoptosis in cancer cells compared to single compounds. Our findings suggest that the co-application of statins and flavonoids at low concentrations may increase the effectiveness and safety of cancer therapy. Thus, the simultaneous application of statins and flavonoids may be a new and promising anticancer strategy.


Subject(s)
COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Apoptosis , Cell Line , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Kv1.3 Potassium Channel/metabolism , Neoplasms/drug therapy , Simvastatin/pharmacology
3.
J Mol Struct ; 1230: 129905, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33437096

ABSTRACT

Voltage-gated potassium channels are integral membrane proteins selectively permeable for potassium ions and activated upon change of membrane potential. Voltage-gated potassium channels of the Kv1.3 type were discovered both in plasma membrane and in inner mitochondrial membrane (mito Kv1.3 channels). For some time Kv1.3 channels located both in plasma membrane and in mitochondria are considered as a potentially new molecular target in several pathologies including some cancer disorders. Lipophilic nontoxic organic inhibitors of Kv1.3 channels may potentially find a clinical application to support therapy of some cancer diseases such as breast, pancreas and lung cancer, melanoma or chronic lymphocytic leukaemia (B-CLL). Inhibition of T lymphocyte Kv1.3 channels may be also important in treatment of chronic and acute respiratory diseases including severe pulmonary complication in corona virus disease Covid 19, however further studies are needed to confirm this supposition. Statins are small-molecule organic compounds, which are lipophilic and are widely used in treatment of hypercholesterolemia and atherosclerosis. Electrophysiological studies performed in our laboratory showed that statins: pravastatin, mevastatin and simvastatin are effective inhibitors of Kv1.3 channels in cancer cells of human T cell line Jurkat. We showed that application of the statins in the concentration range from 1.5 µM to 50 µM inhibited the channels in a concentration-dependent manner. The inhibitory effect was the most potent in case of simvastatin and the least potent in case of pravastatin. The inhibition was partially irreversible in case of simvastatin and fully reversible in case of pravastatin and mevastatin. It was accompanied by a significant acceleration of the current inactivation rate without any significant change of the activation rate. Mechanism of the inhibition is probably complex, including a direct interaction with the channel protein and perturbation of lipid bilayer structure, leading to stabilization of the inactivated state of the channels.

4.
Apoptosis ; 25(9-10): 648-662, 2020 10.
Article in English | MEDLINE | ID: mdl-32627119

ABSTRACT

Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.


Subject(s)
Apoptosis/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-6/genetics , fas Receptor/genetics , Animals , Blood Vessels/growth & development , Blood Vessels/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/genetics , Gene Expression Regulation, Developmental/drug effects , Heparin-binding EGF-like Growth Factor/genetics , Humans , MAP Kinase Kinase 4/genetics , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Oncogene Protein v-akt/genetics , Signal Transduction/drug effects , Staurosporine/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics
5.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Article in English | MEDLINE | ID: mdl-31434493

ABSTRACT

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Subject(s)
Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Demethylation , Gene Expression , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Humans , Inflammation/metabolism , Interleukin-6/metabolism , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism
6.
Annu Rev Physiol ; 78: 45-66, 2016.
Article in English | MEDLINE | ID: mdl-26442438

ABSTRACT

DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.


Subject(s)
DNA Damage/physiology , DNA Repair/physiology , Vascular Diseases/genetics , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Cycle/genetics , Cell Cycle/physiology , Cellular Senescence/genetics , Cellular Senescence/physiology , DNA Damage/genetics , DNA Repair/genetics , DNA, Mitochondrial/genetics , Humans , Muscle, Smooth, Vascular/physiology , Vascular Diseases/pathology
7.
Int J Mol Sci ; 20(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813251

ABSTRACT

Since none of the multidrug resistance (MDR) modulators tested so far found their way into clinic, a novel approach to overcome the MDR of cancer cells has been proposed. The combined use of two MDR modulators of dissimilar mechanisms of action was suggested to benefit from the synergy between them. The effect of three phenothiazine derivatives that were used as single agents and in combination with simvastatin on cell growth, apoptosis induction, activity, and expression of cyclooxygenase-2 (COX-2) in doxorubicin-resistant colon cancer cells (LoVo/Dx) was investigated. Treatment of LoVo/Dx cells by phenothiazine derivatives combined with simvastatin resulted in an increase of doxorubicin cytotoxicity and its intracellular accumulation as compared to the treatment with phenothiazine derivatives that were used as single agents. Similarly, LoVo/Dx cells treated with two-component mixture of modulators showed the reduced expression of ABCB1 (P-glycoprotein) transporter and COX-2 enzyme, both on mRNA and protein level. Reduced expression of anti-apoptotic Bcl-2 protein and increased expression of pro-apoptotic Bax were also detected. Additionally, COX-2 activity was diminished, and caspase-3 activity was increased to a higher extent by phenothiazine derivative:simvastatin mixtures than by phenothiazine derivatives themselves. Therefore, the introduction of simvastatin strengthened the anti-MDR, anti-inflammatory, and pro-apoptotic properties of phenothiazines in LoVo/Dx cells.


Subject(s)
Apoptosis/drug effects , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Cyclooxygenase 2/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Phenothiazines/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Doxorubicin/chemistry , Drug Synergism , Humans , Phenothiazines/chemistry , Simvastatin/chemistry , Simvastatin/pharmacology , bcl-2-Associated X Protein/metabolism
8.
J Membr Biol ; 251(5-6): 695-704, 2018 12.
Article in English | MEDLINE | ID: mdl-30187077

ABSTRACT

The influence of a prenylated flavonoid-6-prenylnaringenin (6-PR) and selected non-prenylated flavonoids: acacetin, chrysin, baicalein, wogonin, and luteolin on the activity of voltage-gated potassium channels Kv1.3 was investigated in human leukemic Jurkat T cells. Electrophysiological measurements were accompanied by studies on the cytotoxic effect of the examined compounds on Jurkat T cells. Electrophysiological studies were performed using the whole-cell patch-clamp technique. Cell viability was determined using the MTT assay. 6-PR inhibited Kv1.3 channels in Jurkat T cells in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 5.76 µM. Among non-prenylated flavonoids, acacetin and chrysin inhibited Kv1.3 channels in Jurkat T cells when applied at the concentration of 30 µM, whereas baicalein, wogonin, and luteolin were ineffective at this concentration. The inhibitory effects of acacetin and chrysin on Kv1.3 channels were significantly less potent than the inhibition caused by 6-PR. All tested compounds inhibited growth of Jurkat T cells in a concentration-dependent manner. Wogonin and chrysin were the most cytotoxic flavonoids tested, whereas baicalein and 6-PR were the least cytotoxic compounds. In accordance to our hypothesis the prenylated flavonoid (6-PR) was much more effective inhibitor of Kv1.3 channels than non-prenylated compounds selected for this study. The inhibition of Kv1.3 channels by 6-PR, acacetin, and chrysin was not related to cytotoxicity of these compounds. The channels' inhibition might be involved in anti-proliferative and pro-apoptotic effects of 6-PR, acacetin and chrysin observed in cancer cell lines expressing these channels.


Subject(s)
Flavonoids/metabolism , Flavonoids/pharmacology , Kv1.3 Potassium Channel/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chalcones/chemistry , Humans , Jurkat Cells , Patch-Clamp Techniques , Prenylation
9.
Arterioscler Thromb Vasc Biol ; 37(12): 2322-2332, 2017 12.
Article in English | MEDLINE | ID: mdl-28970293

ABSTRACT

OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , DNA Damage , DNA, Mitochondrial/metabolism , Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow Transplantation , Cell Respiration , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Mitochondrial/genetics , Disease Models, Animal , Female , Fibrosis , Genetic Predisposition to Disease , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy , Muscle, Smooth, Vascular/pathology , Necrosis , Oxygen Consumption , Phenotype , Reactive Oxygen Species/metabolism , Time Factors
10.
J Physiol ; 594(8): 2115-24, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26174609

ABSTRACT

Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis.


Subject(s)
Aging/metabolism , Atherosclerosis/metabolism , Cellular Senescence , Muscle, Smooth, Vascular/metabolism , Aging/genetics , Aging/pathology , Animals , Atherosclerosis/genetics , DNA Damage , Humans , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/growth & development , Signal Transduction
11.
Circulation ; 132(20): 1909-19, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26416809

ABSTRACT

BACKGROUND: Although vascular smooth muscle cell (VSMC) proliferation is implicated in atherogenesis, VSMCs in advanced plaques and cultured from plaques show evidence of VSMC senescence and DNA damage. In particular, plaque VSMCs show shortening of telomeres, which can directly induce senescence. Senescence can have multiple effects on plaque development and morphology; however, the consequences of VSMC senescence or the mechanisms underlying VSMC senescence in atherosclerosis are mostly unknown. METHODS AND RESULTS: We examined the expression of proteins that protect telomeres in VSMCs derived from human plaques and normal vessels. Plaque VSMCs showed reduced expression and telomere binding of telomeric repeat-binding factor-2 (TRF2), associated with increased DNA damage. TRF2 expression was regulated by p53-dependent degradation of the TRF2 protein. To examine the functional consequences of loss of TRF2, we expressed TRF2 or a TRF2 functional mutant (T188A) as either gain- or loss-of-function studies in vitro and in apolipoprotein E(-/-) mice. TRF2 overexpression bypassed senescence, reduced DNA damage, and accelerated DNA repair, whereas TRF2(188A) showed opposite effects. Transgenic mice expressing VSMC-specific TRF2(T188A) showed increased atherosclerosis and necrotic core formation in vivo, whereas VSMC-specific TRF2 increased the relative fibrous cap and decreased necrotic core areas. TRF2 protected against atherosclerosis independent of secretion of senescence-associated cytokines. CONCLUSIONS: We conclude that plaque VSMC senescence in atherosclerosis is associated with loss of TRF2. VSMC senes cence promotes both atherosclerosis and features of plaque vulnerability, identifying prevention of senescence as a potential target for intervention.


Subject(s)
Atherosclerosis/metabolism , Cellular Senescence/physiology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/metabolism , Animals , Atherosclerosis/pathology , Cells, Cultured , Female , Humans , Male , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/pathology
12.
J Membr Biol ; 248(4): 705-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25688010

ABSTRACT

Using whole-cell patch-clamp technique, we investigated influence of selected compounds from groups of prenylated chalcones and flavonoids: xanthohumol and isoxanthohumol on the activity of Kv1.3 channels in human leukemic Jurkat T cells. Obtained results provide evidence that both examined compounds were inhibitors of Kv1.3 channels in these cells. The inhibitory effects occurred in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 3 µM for xanthohumol and about 7.8 µM for isoxanthohumol. The inhibition of Kv1.3 channels by examined compounds was not complete. Upon an application of the compounds at the maximal concentrations equal to 30 µM, the activity of Kv1.3 channels was inhibited to about 0.13 of the control value. The inhibitory effect was reversible. The application of xanthohumol and isoxanthohumol did not change the currents' activation and inactivation rate. These results may confirm our earlier hypothesis that the presence of a prenyl group in a molecule is a factor that facilitates the inhibition of Kv1.3 channels by compounds from the groups of flavonoids and chalcones. The inhibition of Kv1.3 channels might be involved in antiproliferative and proapoptotic effects of the compounds observed in cancer cell lines expressing these channels.


Subject(s)
Cell Proliferation/drug effects , Flavonoids/pharmacology , Kv1.3 Potassium Channel/antagonists & inhibitors , Propiophenones/pharmacology , Xanthones/pharmacology , Dose-Response Relationship, Drug , Humans , Jurkat Cells , Kv1.3 Potassium Channel/metabolism
13.
Biochim Biophys Acta Gen Subj ; 1868(4): 130581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336309

ABSTRACT

Chalcones are naturally produced by many plants, and constitute precursors for the synthesis of flavons and flavanons. They were shown to possess antibacterial, antifungal, anti-cancer, and anti- inflammatory properties. The goal of the study was to assess the suitability of three synthetic methoxychalcones as potential anticancer agents. In a panel of colon cancer cell lines they were demonstrated to be cytotoxic, proapoptotic, causing cell cycle arrest, and increasing intracellular level of reactive oxygen species. Anticancer activity of the compounds was not diminished in the presence of stool extract containing microbial enzymes that could change the structure of chalcones. Moreover, methoxychalcones interacted strongly with model phosphatidylcholine membranes as detected by differential scanning calorimetry. Metohoxychalcones particularly affected the properties of lipid domains in giant unilamellar liposomes formed from raft-mimicking lipid composition. This may be of importance since many molecular targets for therapy of metastatic colon cancer are raft-associated receptors (e.g., receptor tyrosine kinases). The importance of membrane perturbing potency of methoxychalcones for their biological activity was additionally corroborated by the results obtained by molecular modelling.


Subject(s)
Antineoplastic Agents , Chalcones , Colonic Neoplasms , Humans , Chalcones/pharmacology , Chalcones/chemistry , Cell Line , Phosphatidylcholines , Antineoplastic Agents/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology
14.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Article in English | MEDLINE | ID: mdl-35994249

ABSTRACT

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Spinocerebellar Ataxias , Adult , Animals , Humans , Muscle, Smooth, Vascular/pathology , Cardiovascular Diseases/pathology , Cell Proliferation , Atherosclerosis/pathology , Phenotype , Spinocerebellar Ataxias/pathology , Myocytes, Smooth Muscle/pathology , Cells, Cultured
15.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36697134

ABSTRACT

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Subject(s)
Atherosclerosis , Giant Cell Arteritis , Myocardial Infarction , Takayasu Arteritis , Humans , Receptors, Somatostatin , Prospective Studies , Fluorodeoxyglucose F18 , Inflammation/diagnostic imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Coronary Vessels/pathology , Atherosclerosis/diagnostic imaging , Radiopharmaceuticals/pharmacology
16.
Cell Mol Biol Lett ; 17(4): 559-70, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22933043

ABSTRACT

Using the whole-cell patch-clamp technique, we investigated the influence of 8-prenylnaringenin on the activity of the voltage-gated Kv1.3 potassium channels in the human leukemic T lymphocyte cell line Jurkat. 8-prenylnaringenin is a potent plant-derived phytoestrogen that has been found to inhibit cancer cell proliferation. The results show that it inhibited the Kv1.3 channels in a concentration-dependent manner. Complete inhibition occurred at concentrations higher than 10 µM. The inhibitory effect of 8-prenylnaringenin was reversible. It was accompanied by a significant acceleration of channel inactivation without any pronounced change in the activation rate. Of the naringenin derivatives tested to date, 8-prenylnaringenin is the most potent inhibitor of the Kv1.3 channels. The potency of the inhibition may be due to the presence of a prenyl group in the molecule of this flavonoid. The inhibition of the Kv1.3 channels might be involved in the antiproliferative and pro-apoptotic effects of 8-prenylnaringenin that have been observed in cancer cell lines expressing these channels.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Flavanones/pharmacology , Kv1.3 Potassium Channel/metabolism , Humans , Jurkat Cells , Kv1.3 Potassium Channel/antagonists & inhibitors , Patch-Clamp Techniques
17.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: mdl-35626694

ABSTRACT

Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-ß and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.


Subject(s)
Coronary Artery Disease , Heart Failure , Fibroblasts , Fibrosis , Humans , Muscle, Smooth, Vascular , Stroke Volume
18.
Cardiovasc Res ; 118(7): 1713-1727, 2022 06 22.
Article in English | MEDLINE | ID: mdl-34142149

ABSTRACT

AIMS: Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAßG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS: We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAßG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAßG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS: We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Biomarkers/metabolism , Cells, Cultured , Cellular Senescence , Humans , Inflammation/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/metabolism , Senotherapeutics
19.
Atheroscler Plus ; 49: 32-41, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36644202

ABSTRACT

Background and aims: Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. Methods: In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. Results: Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. Conclusions: Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.

20.
Commun Biol ; 4(1): 611, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021256

ABSTRACT

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Subject(s)
Atherosclerosis/pathology , Cellular Senescence , Inflammation/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Telomere/pathology , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cell Proliferation , Cells, Cultured , DNA Damage , Disease Models, Animal , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/physiology , Muscle Proteins/physiology , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Neointima/etiology , Neointima/metabolism , Telomere/genetics , Telomeric Repeat Binding Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL