Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Biochem Biophys Res Commun ; 699: 149545, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38277729

ABSTRACT

The YsxC protein from Staphylococcus aureus is a GTP-binding protein from the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPase class, EngB family of GTPases. Recent structural and biochemical studies of YsxC function show that it is an integral part of the pathogenic microorganism life cycle, as it is involved in the assembly of the large 50S ribosomal subunit. Structural studies of this protein with its specific functional features make it an attractive target for further development of new selective antimicrobials. In this study, we cloned the ysxC protein gene from S. aureus, overexpressed the protein in E. coli, and subsequently purified and crystallized it. Protein crystals were successfully grown using the vapor diffusion method, yielding diffraction data with a resolution of up to 2 Å. Comparative analysis of the structure of SaYsxC with known three-dimensional structures of homologs from other microorganisms showed the presence of structural differences for the apo form.


Subject(s)
GTP Phosphohydrolases , Staphylococcus aureus , GTP Phosphohydrolases/metabolism , Staphylococcus aureus/metabolism , Escherichia coli/metabolism , Bacterial Proteins/metabolism , GTP-Binding Proteins/metabolism , Crystallography, X-Ray
2.
PLoS Biol ; 18(7): e3000564, 2020 07.
Article in English | MEDLINE | ID: mdl-32701952

ABSTRACT

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Subject(s)
Amyloid/metabolism , Pisum sativum/metabolism , Seed Storage Proteins/metabolism , Seeds/metabolism , Amyloid/ultrastructure , Detergents/pharmacology , Escherichia coli/metabolism , Ions , Pancreatin/metabolism , Pisum sativum/drug effects , Pepsin A/metabolism , Protein Aggregates , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Saccharomyces cerevisiae/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/pharmacology , Seed Storage Proteins/ultrastructure
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768442

ABSTRACT

Ribosome biogenesis is a complex and highly accurate conservative process of ribosomal subunit maturation followed by association. Subunit maturation comprises sequential stages of ribosomal RNA and proteins' folding, modification and binding, with the involvement of numerous RNAses, helicases, GTPases, chaperones, RNA, protein-modifying enzymes, and assembly factors. One such assembly factor involved in bacterial 30S subunit maturation is ribosomal binding factor A (RbfA). In this study, we present the crystal (determined at 2.2 Å resolution) and NMR structures of RbfA as well as the 2.9 Å resolution cryo-EM reconstruction of the 30S-RbfA complex from Staphylococcus aureus (S. aureus). Additionally, we show that the manner of RbfA action on the small ribosomal subunit during its maturation is shared between bacteria and mitochondria. The obtained results clarify the function of RbfA in the 30S maturation process and its role in ribosome functioning in general. Furthermore, given that S. aureus is a serious human pathogen, this study provides an additional prospect to develop antimicrobials targeting bacterial pathogens.


Subject(s)
Escherichia coli Proteins , Methicillin-Resistant Staphylococcus aureus , Humans , Ribosomal Proteins/metabolism , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Escherichia coli Proteins/metabolism , Bacteria/metabolism , Mitochondria/metabolism , RNA, Ribosomal, 16S/metabolism
4.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240295

ABSTRACT

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into ß-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.


Subject(s)
Amyloid , Peptides , Humans , Amino Acid Sequence , Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Amyloidogenic Proteins , Circular Dichroism , Protein Folding , Amyloid beta-Peptides/chemistry
5.
Bioorg Chem ; 127: 106030, 2022 10.
Article in English | MEDLINE | ID: mdl-35870414

ABSTRACT

Here we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S. aureus was studied by CV test, TEM and proteomic assay. No cell wall integrity loss was observed while proteomic assay results suggested interference in different metabolic processes of S. aureus. For this series, lipophilicity was determined as a key factor for the inhibition of Gram-positive bacteria growth and S. aureus killing. Biological properties of methylated derivatives were notably different with manifested action against Gram-negative bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Salts , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Microbial Sensitivity Tests , Proteomics , Staphylococcus aureus , Structure-Activity Relationship
6.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499212

ABSTRACT

Artificial gene delivery systems are in great demand from both scientific and practical biomedical points of view. In this paper, we present the synthesis of a new click chemistry calix[4]arene precursor with free lower rim and new water-soluble calixarene triazoles with 12 amino-groups on the upper rim (one with free phenol hydroxyl groups and two another containing four butyl or tetradecyl fragments). Aggregation in the series of amino-triazole calixarenes of different lipophilicity (calixarene with free phenol hydroxyl groups or butyl and tetradecyl fragments on the lower rim) was studied using dynamic light scattering and fluorescent pyrene probe. It was found that calix[4]arene with a free lower rim, like alkyl-substituted butyl calix[4]arene, forms stable submicron aggregates 150-200 nm in size, while the more lipophilic tetradecyl -substituted calix[4]arene forms micellar aggregates19 nm in size. Using UV-Vis spectroscopy, fluorimetry and CD, it was shown that amino-triazole calix[4]arenes bind to calf thymus DNA by classical intercalation. According to DLS and TEM data, all studied macrocycles cause significant DNA compaction, forming stable nanoparticles 50-20 nm in size. Among all studied calix[4]arenes the most lipophilic tetradecyl one proved to be the best for both binding and compaction of DNA.


Subject(s)
Calixarenes , Triazoles , Polyamines , Phenol , Calixarenes/chemistry , DNA
7.
Molecules ; 27(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36014420

ABSTRACT

Elaboration of a convenient route towards donor-substituted pyrazoles from heteropropargyl precursors is challenging due to a number of thermodynamically favorable side reactions (e.g., acetylene-allene isomerization and Glaser homocoupling). In this work, Sonogashira cross-coupling conditions of 4-tert-butylphenyl propargyl ether with benzoyl chloride followed by tandem Michael addition/cyclocondensation with hydrazine into 3,5-disubstituted pyrazole (kinetic control), as well as cycloisomerization conditions of ketoacetylene intermediate into 2,5-disubstituted furan (thermodynamic control), were established through a variation of the catalyst loading, solvent polarity, excess of triethylamine, and time of reaction. During the optimization of process parameters, a number of by-products represented by a monophosphine binuclear complex (PPh3PdI2)2 with two bridging iodine atoms and diyne were identified and isolated in the pure form. The quantum-chemical calculations and solution-state 1H/13C NMR spectroscopy suggested that the 5(3)-(4-tert-butylphenyloxy)methoxy-3(5)-phenyl-1H-pyrazole exists in the tautomeric equilibrium in a polar methanol solvent and that individual tautomers could be characterized in case aprotic solvents employed. The pyrazole features a unique tetramer motif in the crystal phase formed by alternating 3(5)-phenyl-1H-pyrazole tautomers, which was stabilized by N-H···N bonds and stacking interactions of pyrazole rings, whereas pyrazole dimers were identified in the gas phase.


Subject(s)
Furans , Pyrazoles , Pyrazoles/chemistry , Solvents , Thermodynamics
8.
EMBO J ; 36(14): 2073-2087, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28645916

ABSTRACT

In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress-induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation-promoting factor (SaHPF) that we solved using cryo-electron microscopy. Our reconstructions reveal that the N-terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C-terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD-dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.


Subject(s)
Bacterial Proteins/metabolism , Dimerization , Ribosomes/metabolism , Ribosomes/ultrastructure , Staphylococcus aureus/metabolism , Staphylococcus aureus/ultrastructure , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Interaction Mapping , RNA, Ribosomal, 16S/metabolism
9.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299115

ABSTRACT

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Tamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzoxazoles/chemistry , Thiazoles/chemistry , Uterine Cervical Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Molecular Structure , Structure-Activity Relationship , Uterine Cervical Neoplasms/pathology
10.
Int J Mol Sci ; 22(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34502553

ABSTRACT

Herein, we report on the reaction of nitro-substituted azidobenzofuroxans with 1,3-dicarbonyl compounds in basic media. The known reactions of benzofuroxans and azidofuroxans with 1,3-dicarbonyl compounds in the presence of bases are the 1,3-dipolar cycloaddition and the Beirut reaction. In contrast with this, azidonitrobenzofuroxan reacts with 1,3-carbonyl compounds through Regitz diazo transfer, which is the first example of this type of reaction for furoxan derivatives. This difference is seemingly due to the strong electron-withdrawing effect of the superelectrophilic azidonitrobenzofuroxan, which serves as the azido transfer agent rather than 1,3-dipole in this case.


Subject(s)
Azo Compounds/chemistry , Benzoxazoles/chemistry , Chemistry, Pharmaceutical/methods , Cycloaddition Reaction , Animals , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Models, Chemical , Molecular Structure , Stereoisomerism
11.
J Struct Biol ; 209(1): 107408, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31669310

ABSTRACT

Staphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Šresolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro.


Subject(s)
Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Dimerization , Hibernation/genetics , Humans , Protein Binding/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/ultrastructure , Ribosomes/ultrastructure , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity
12.
Eur Biophys J ; 49(3-4): 223-230, 2020 May.
Article in English | MEDLINE | ID: mdl-32152681

ABSTRACT

Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.


Subject(s)
Bacterial Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptide Elongation Factors/chemistry , Staphylococcus aureus , Bacterial Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Peptide Elongation Factors/metabolism , Protein Domains
13.
Molecules ; 25(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023057

ABSTRACT

This study focuses on the behavior of a new fluorescent marker for labeling individual biomolecules and staining cell organelles developed on a meso-substituted BODIPY platform. Boron(III) complex with meso-4-methoxycarbonylpropylsubstituted 3,3',5,5'-tetramethyl-2,2'-dipyrromethene has been synthesized and identified via visible, UV-, NMR- and MS-spectra X-ray. The behavior of fluorophore in solutions has been studied with various experimental techniques. It has been found that luminophore exhibits a high quantum yield (almost ~100-75%) in the blue-green region (513-520 nm) and has high photostability. In addition, biological analysis indicates that the fluorophore exhibits a tendency to effectively penetrate into cell membranes. On the other hand, the proposed BODIPY can be used to study the significant differences among a large number of pathogens of mycotic infections, as well as to visualize structural changes in the plasma membrane, which is necessary for the clearance of mammalian cells undergoing apoptotic cell death.


Subject(s)
Boron/chemistry , Diagnostic Imaging , Porphobilinogen/analogs & derivatives , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Candida albicans/cytology , Cell Line, Tumor , Crystallography, X-Ray , Doxorubicin/pharmacology , Electrons , Fusarium/cytology , Humans , Porphobilinogen/chemistry , Solvents/chemistry , Spectrometry, Fluorescence , Subcellular Fractions/metabolism , Ultraviolet Rays
14.
J Biomol NMR ; 73(5): 223-227, 2019 May.
Article in English | MEDLINE | ID: mdl-31165320

ABSTRACT

Staphylococcus aureus hibernation promoting factor (SaHPF) is a 22,2 kDa protein which plays a crucial role in 100S Staphylococcus aureus ribosome formation during stress. SaHPF consists of N-terminal domain (NTD) that prevents proteins synthesis by binding to the 30S subunit at the P- and A-sites, connected through a flexible linker with a C-terminal domain (CTD) that keeps ribosomes in 100S form via homodimerization. Recently obtained 100S ribosome structure of S. aureus by cryo-EM shown that SaHPF-NTD bound to the ribosome active sites, however due to the absence of SaHPF-NTD structure it was modeled by homology with the E. coli hibernation factors HPF and YfiA. In present paper we have determined the solution structure of SaHPF-NTD by high-resolution NMR spectroscopy which allows us to increase structural knowledge about HPF structure from S. aureus.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Staphylococcus aureus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/metabolism
15.
Eur Biophys J ; 46(3): 293-300, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27589857

ABSTRACT

Protegrin pore formation is believed to occur in a stepwise fashion that begins with a nonspecific peptide interaction with the negatively charged bacterial cell walls via hydrophobic and positively charged amphipathic surfaces. There are five known nature protegrins (PG1-PG5), and early studies of PG-1 (PDB ID:1PG1) shown that it could form antiparallel dimer in membrane mimicking environment which could be a first step for further oligomeric membrane pore formation. Later, we solved PG-2 (PDB ID:2MUH) and PG-3 (PDB ID:2MZ6) structures in the same environment and for PG-3 observed a strong dαα NOE effects between residues R18 and F12, V14, and V16. These "inconsistent" with monomer structure NOEs appears due to formation of an additional antiparallel ß-sheet between two monomers. It was also suggested that there is a possible association of protegrins dimers to form octameric or decameric ß-barrels in an oligomer state. In order to investigate a more detailed oligomerization process of protegrins, in the present article we report the monomer (PDB ID: 2NC7) and octamer pore structures of the protegrin-5 (PG-5) in the presence of DPC micelles studied by solution NMR spectroscopy. In contrast to PG-1, PG-2, and PG-3 studies, for PG-5 we observed not only dimer NOEs but also several additional NOEs between side chains, which allows us to calculate an octamer pore structure of PG-5 that was in good agreement with previous AFM and PMF data.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Membranes, Artificial , Protein Multimerization , Amino Acid Sequence , Cell Membrane/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Micelles , Models, Molecular , Protein Conformation, beta-Strand
16.
Analyst ; 142(16): 2897-2900, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28731076

ABSTRACT

In the present Communication, we propose a quite simple but previously overlooked approach for conveniently analyzing, assigning, and extracting sialic acid-containing N-glycan structures using high-resolution NMR spectroscopy without pre-installing metal chelators. Paramagnetic metals, such as Gd3+, appear to bind to the carboxyl groups of N-acetylneuraminic acid when introduced at room temperature, leading to the measurement of nonequivalent proton and carbon NMR spectral signals among otherwise "identical" glycan branched structures.


Subject(s)
Gadolinium , Magnetic Resonance Spectroscopy , Polysaccharides/chemistry , Metals , Protons
17.
Structure ; 32(1): 74-82.e5, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38000368

ABSTRACT

Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/metabolism , Bacterial Proteins/chemistry , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Scattering, Small Angle , Ribosome Subunits, Small, Bacterial/chemistry , X-Ray Diffraction , Electron Spin Resonance Spectroscopy , Ribosomal Proteins/chemistry , Ribosome Subunits, Small/metabolism , Cryoelectron Microscopy
18.
Eur Biophys J ; 42(11-12): 803-10, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037178

ABSTRACT

The spatial structure of Alzheimer's amyloid Aß10-35-NH2 peptide in aqueous solution at pH 7.3 and in SDS micelles was investigated by use of a combination of the residual dipolar coupling method and two-dimensional NMR spectroscopy (TOCSY, NOESY). At pH 7.3 Aß10-35-NH2 adopts a compact random-coil conformation whereas in SDS micellar solutions two helical regions (residues 13-23 and 30-35) of Aß10-35-NH2 were observed. By use of experimental data, the structure of "peptide-micelle" complex was determined; it was found that Aß10-35-NH2 peptide binds to the micelle surface at two regions (residues 17-20 and 29-35).


Subject(s)
Amyloid beta-Peptides/chemistry , Micelles , Nuclear Magnetic Resonance, Biomolecular/methods , Peptide Fragments/chemistry , Sodium Dodecyl Sulfate/chemistry , Amino Acid Sequence , Cell Membrane/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Protein Conformation , Solutions
19.
Magn Reson Chem ; 50(12): 784-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23034896

ABSTRACT

The spatial structure of an active fragment of beta-amyloid Aß(1-40) heptapeptide Aß(16-22) (Lys-Leu-Val-Phe-Phe-Ala-Glu) in aqueous buffer solution and in complex with sodium dodecyl sulfate micelles as a model membrane system was investigated by (1)H NMR spectroscopy and two-dimensional NMR (TOCSY, HSQC-HECADE (Heteronuclear Couplings from ASSCI-domain experiments with E.COSY-type crosspeaks), NOESY) spectroscopy. Complex formation was confirmed by the chemical shift changes of the heptapeptide's (1)H NMR spectra, as well as by the signs and values of the NOE effects in different environments. We compared the spatial structure of the heptapeptide in borate buffer solution and in complex with a model of the cell surface membrane.


Subject(s)
Amyloid beta-Peptides/chemistry , Membranes, Artificial , Peptide Fragments/chemistry , Protons , Boric Acids , Buffers , Humans , Magnetic Resonance Spectroscopy , Micelles , Models, Molecular , Protein Structure, Secondary , Sodium Dodecyl Sulfate , Solutions , Water
20.
Biomol NMR Assign ; 16(2): 373-377, 2022 10.
Article in English | MEDLINE | ID: mdl-36070063

ABSTRACT

The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight ß-strands and three α-helices with the topology α1-ß1-ß2-α2- ß3- α3- ß4- ß5- ß6- ß7- ß8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.


Subject(s)
Ribosomes , Staphylococcus aureus , Cryoelectron Microscopy , Nuclear Magnetic Resonance, Biomolecular , RNA, Ribosomal, 16S/metabolism , Ribosomal Proteins/chemistry , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL