Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Appl Toxicol ; 44(8): 1269-1278, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705171

ABSTRACT

In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction. A major drawback to those methodologies is that the extraction process can modify the collected particles and alter their chemical composition. Moreover, prior to toxicity testing, PM samples need to be resuspended, which can alter the PM sample even further. Lastly, the choice of the resuspension medium may also impact the detected toxicological responses. In this study, we compared the toxicity profile of PM obtained from two alternative sampling systems, using in vitro toxicity assays. One system makes use of condensational growth before collection in water in an impinger - BioSampler (CG-BioSampler), and the other, a Dekati® Gravimetric Impactor (DGI), is based on inertial impaction. In addition, various methods for resuspension of DGI collected PM were compared. Tested endpoints included cytotoxicity, formation of cellular reactive oxygen species, and genotoxicity. The alternative collection and suspension methods affected different toxicological endpoints. The water/dimethyl sulfoxide mixture and cell culture medium resuspended particles, along with the CG-BioSampler sample, produced the strongest responses. The water resuspended sample from the DGI appeared least toxic. CG-BioSampler collected PM caused a clear increased response in apoptotic cell death. We conclude that the CG-BioSampler PM sampler is a promising alternative to inertial impaction sampling.


Subject(s)
Particulate Matter , Vehicle Emissions , Particulate Matter/toxicity , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , A549 Cells , Particle Size , Air Pollutants/toxicity , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Toxicity Tests/methods , Environmental Monitoring/methods , Suspensions
2.
Part Fibre Toxicol ; 20(1): 30, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37517998

ABSTRACT

BACKGROUND: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity. METHODS: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549). RESULTS: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances. CONCLUSIONS: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.


Subject(s)
Smoke , Wood , Humans , Smoke/adverse effects , Macrophages , Phagocytosis , Inflammation/chemically induced , DNA , Bronchoalveolar Lavage Fluid , Inhalation Exposure/adverse effects
3.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32539833

ABSTRACT

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Subject(s)
Air Pollutants/toxicity , DNA Damage , Inhalation Exposure/adverse effects , Picea/chemistry , Pinus/chemistry , Smoke/adverse effects , Wood , A549 Cells , Aerosols , Air Pollutants/analysis , Animals , Cell Culture Techniques , Cell Survival/drug effects , Cytokines/metabolism , Heating , Humans , Inhalation Exposure/analysis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Particle Size , RAW 264.7 Cells , Smoke/analysis , Species Specificity , Transcriptome/drug effects
4.
J Appl Toxicol ; 39(8): 1143-1154, 2019 08.
Article in English | MEDLINE | ID: mdl-30957912

ABSTRACT

The use of electronic cigarettes (E-cigs) is rapidly increasing. The latest generation of E-cigs is highly customizable, allowing for high heating coil temperatures. The aim of this study was to assess the toxic potential of a fourth-generation E-cig. Aerosols generated from E-liquid with (24 mg/mL) and without nicotine, using a fourth-generation E-cig, were chemically analysed and compared with cigarette smoke (K3R4F). Human lung epithelial cell lines and distal lung tissue explants were exposed to E-cig vapour extract (EVE) and cigarette smoke extract for 24 hours and assessed for viability, inflammation, oxidative stress and genotoxicity. E-cig aerosols contained measurable levels of volatile organic compounds, aldehydes and polycyclic aromatic hydrocarbons, in general, to a much lesser extent than cigarette smoke. Higher levels of certain carbonyls, e.g. formaldehyde, were detected in the E-cig aerosols. EVEs decreased cell viability of BEAS-2B cells, whereas little effect was seen in A549 cells and distal lung tissue. The nicotine-containing EVE caused a greater decrease in cell viability and significant increase in DNA damage than the nicotine-free EVE. Increased cytotoxicity, reactive oxygen species production and genotoxicity were seen with cells and tissue exposed to cigarette smoke extract compared with EVEs. Although E-cig aerosols were less toxic than cigarette smoke, it was not benign. Moreover, the EVE containing nicotine was more toxic than the nicotine-free EVE. More research is needed on the short- and long-term health effects of vaping and the usage of newly emerging E-cig devices to evaluate better the potential negative effects of E-cigs on human health.


Subject(s)
DNA Damage , Electronic Nicotine Delivery Systems , Lung/drug effects , Nicotine/toxicity , Volatile Organic Compounds/toxicity , A549 Cells , Aerosols , Cell Cycle/drug effects , Cell Survival/drug effects , Cell Survival/immunology , Cytokines/metabolism , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Lung/immunology , Lung/metabolism , Lung/pathology , Nicotine/analysis , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Volatile Organic Compounds/analysis
5.
Environ Toxicol ; 32(5): 1487-1499, 2017 May.
Article in English | MEDLINE | ID: mdl-27678477

ABSTRACT

According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017.


Subject(s)
Air Pollutants/pharmacology , Alveolar Epithelial Cells/drug effects , Betula/chemistry , Fagus/chemistry , Fires , Particulate Matter/pharmacology , Picea/chemistry , Wood/chemistry , A549 Cells , Air Pollutants/analysis , Air Pollutants/isolation & purification , Air Pollution, Indoor , Alveolar Epithelial Cells/physiology , Cell Survival/drug effects , Cooking , DNA Damage/drug effects , Humans , Particulate Matter/analysis , Particulate Matter/isolation & purification , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/physiology , Reactive Oxygen Species/metabolism , Smoke/analysis , Toxicity Tests
6.
Part Fibre Toxicol ; 12: 33, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511835

ABSTRACT

BACKGROUND: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. METHODS: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 µg/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. RESULTS: Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. CONCLUSIONS: Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure. TRIAL REGISTRATION: NCT01488500.


Subject(s)
Smoke , Wood , Bronchoalveolar Lavage Fluid , Humans , Inhalation Exposure , Respiratory Function Tests , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/physiopathology
7.
Chem Res Toxicol ; 27(9): 1516-27, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25063562

ABSTRACT

Multiple studies show that particulate mass (PM) generated from incomplete wood combustion may induce adverse health issues in humans. Previous findings have shown that also the PM from efficient wood combustion may induce enhanced production of reactive oxygen species (ROS), inflammation, and cytotoxicity in vitro and in vivo. Underlying factors of these effects may be traced back to volatile inorganic transition metals, especially zinc, which can be enriched in the ultrafine fraction of biomass combustion particulate emission. In this study, nanoparticles composed of potassium, sulfur, and zinc, which are the major components forming inorganic fine PM, were synthesized and tested in vitro. In addition, in vitro toxicity of PM from efficient combustion of wood chips was compared with that of the synthesized particles. Cytotoxicity, cell cycle arrest, ROS generation, and tumor necrosis factor alpha release were related to zinc concentration in PM. Potassium sulfate and potassium carbonate did not induce toxic responses. In light of the provided data, it can be concluded that zinc, enriched in wood combustion emissions, caused the toxicity in all of the measured end points.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Wood/chemistry , Air Pollutants/chemistry , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Inflammation/etiology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nanoparticles/chemistry , Nanoparticles/toxicity , Particulate Matter/chemistry , Potassium/chemistry , Reactive Oxygen Species/metabolism , Sulfur/chemistry , Thermodynamics , Tumor Necrosis Factor-alpha/metabolism , Zinc/chemistry , Zinc/toxicity
8.
Inhal Toxicol ; 24(14): 952-65, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23216156

ABSTRACT

Inflammation is regarded as an important mechanism behind mortality and morbidity experienced by cardiorespiratory patients exposed to urban air particulate matter (PM). Small-scale biomass combustion is an important source of particulate air pollution. In this study, we investigated association between inflammatory responses and chemical composition of PM(1) emissions from seven different small-scale wood combustion appliances representing old and modern technologies. Healthy C57Bl/6J mice were exposed by intratracheal aspiration to single dose (10 mg/kg) of particulate samples. At 4 and 18 h after the exposure, bronchoalveolar lavage fluid (BALF) as well as serum was collected for subsequent analyses of inflammatory indicators (interleukin (IL)-6, IL-1ß, IL-12, and IL-10; tumor necrosis factor-α (TNF-α); keratinocyte-derived chemoattractant (KC), and interferon-γ (IFN-γ)) in multiplexing assay. When the responses to the PM(1) samples were compared on an equal mass basis, the PM from modern technology appliances increased IL-6, KC, and IL-1ß levels significantly in BALF at 4 and 18 h after the exposure. In contrast, these responses were seen only at 4 h time point in serum. Increased cytokine concentrations correlated with metal-rich ash related compounds which were more predominant in the modern technology furnaces emissions. These particles induced both local and systemic inflammation. Instead, polycyclic hydrocarbon (PAH) rich PM(1) samples from old technology (OT) evoked only minor inflammatory responses. In conclusion, the combustion technology largely affects the toxicological and chemical characteristics of the emissions. The large mass emissions of old combustion technology should be considered, when evaluating the overall harmfulness between the appliances. However, even the small emissions from modern technologies may pose significant toxic risks.


Subject(s)
Biomass , Cooking/instrumentation , Heating/instrumentation , Inflammation/chemically induced , Inhalation Exposure , Particulate Matter/toxicity , Pneumonia/chemically induced , Wood , Acute Disease , Animals , Biomarkers/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/blood , Equipment Design , Inflammation/blood , Inflammation/immunology , Inflammation Mediators/blood , Male , Mice , Mice, Inbred C57BL , Particulate Matter/analysis , Pneumonia/blood , Pneumonia/immunology , Risk Assessment , Time Factors
9.
Environ Pollut ; 248: 888-897, 2019 May.
Article in English | MEDLINE | ID: mdl-30856504

ABSTRACT

There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed. The total suspended particulate matter and fine particulate matter (PM1) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.


Subject(s)
Air Pollutants/analysis , Heating/methods , Particulate Matter/analysis , Plant Oils/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polyphenols/chemistry , Pyrolysis , Finland , Fossil Fuels/analysis , Fuel Oils/analysis , Wood/chemistry
10.
ACS Appl Mater Interfaces ; 10(28): 23529-23538, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29905461

ABSTRACT

Porous silicon (PSi) has attracted wide interest as a potential material for various fields of nanomedicine. However, until now, the application of PSi in photothermal therapy has not been successful due to its low photothermal conversion efficiency. In the present study, biodegradable black PSi (BPSi) nanoparticles were designed and prepared via a high-yield and simple reaction. The PSi nanoparticles possessed a low band gap of 1.34 eV, a high extinction coefficient of 13.2 L/g/cm at 808 nm, a high photothermal conversion efficiency of 33.6%, good photostability, and a large surface area. The nanoparticles had not only excellent photothermal properties surpassing most of the present inorganic photothermal conversion agents (PCAs) but they also displayed good biodegradability, a common problem encountered with the inorganic PCAs. The functionality of the BPSi nanoparticles in photothermal therapy was verified in tumor-bearing mice in vivo. These results showed clearly that the photothermal treatment was highly efficient to inhibit tumor growth. The designed PCA material of BPSi is robust, easy to prepare, biocompatible, and therapeutically extremely efficient and it can be integrated with several other functionalities on the basis of simple silicon chemistry.


Subject(s)
Nanoparticles , Animals , Hyperthermia, Induced , Mice , Nanomedicine , Phototherapy , Porosity , Silicon
11.
Toxicol In Vitro ; 44: 164-171, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28711347

ABSTRACT

Toxicological characterisation of combustion emissions in vitro are often conducted with macrophage cell lines, and the majority of these experiments are based on responses measured at 24h after the exposure. The aim of this study was to investigate how significant role time course plays on toxicological endpoints that are commonly measured in vitro. The RAW264.7 macrophage cell line was exposed to PM1 samples (150µg/ml) from biomass combustion devices representing old and modern combustion technologies for 2, 4, 8, 12, 24 and 32h. After the exposure, cellular metabolic activity, cell membrane integrity, cellular DNA content, DNA damage and production of inflammatory markers were assessed. The present study revealed major differences in the time courses of the responses, statistical differences between the studied samples mostly limiting to differences between modern and old technology samples. Early stage responses consisted of disturbances in metabolic activity and cell membrane integrity. Middle time points revealed increases in chemokine production, whereas late-phase responses exhibited mostly increased DNA-damage, decreased membrane integrity and apoptotic activity. Altogether, these results implicate that the time point of measurement has to be considered carefully, when the toxicity of emission particles is characterised in in vitro study set-ups.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Toxicity Tests/methods , Wood , Animals , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Chemokine CXCL2/metabolism , DNA/metabolism , DNA Damage , Mice , RAW 264.7 Cells , Time Factors , Tumor Necrosis Factor-alpha/metabolism
12.
Toxicol In Vitro ; 42: 105-113, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28414159

ABSTRACT

Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Recent nano-technological advances are leading to wide usage of metallic nanoparticles (NPs) in various fields. However, the increasing use of NPs has led to their release into environment and the toxicity of NPs on human health has become a concern. Moreover, there are inadvertently generated metallic NPs which are formed during various human activities (e.g. metal processing and energy production). Unfortunately, there are still widespread controversies and ambiguities with respect to the toxic effects and mechanisms of metallic NPs, e.g. metal oxides including ZnO. In this study, we generated zinc containing NMs, and studied them in vitro. Different nano-sized particles containing Zn were compared in in vitro study to elucidate the physicochemical characteristics (e.g. chemical composition, solubility, shape and size of the particles) that determine cellular toxicity. Zn induced toxicity in macrophage cell line (RAW 264.7) was detected, leading to the cell cycle disruption, cell death and excitation of release of inflammatory mediators. The solubility and the size of Zn compounds had a major role in the induced toxic responses. The soluble particles reduced the cell viability, whereas the less soluble NPs significantly increased inflammation. Moreover, uptake of large ZnO NPs inside the cells was likely to play a key role in the detected cell cycle arrest.


Subject(s)
Metal Nanoparticles/toxicity , Zinc/toxicity , Animals , Cell Cycle/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice , Microscopy, Electron, Transmission , RAW 264.7 Cells , Solubility , X-Ray Diffraction , Zinc/chemistry
13.
Sci Total Environ ; 443: 256-66, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23201646

ABSTRACT

Current levels of ambient air fine particulate matter (PM(2.5)) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM(2.5) emissions, especially during wintertime. However, the adverse health effects of particulate emissions from the modern heating appliances and fuels are poorly known. In this study, health related toxicological properties of PM(1) emissions from five modern and two old technology appliances were examined. The PM(1) samples were collected by using a Dekati® Gravimetric Impactor (DGI). The collected samples were weighed and extracted with methanol for chemical and toxicological analyses. Healthy C57BL/6J mice were intratracheally exposed to a single dose of 1, 3, 10 or 15 mg/kg of the particulate samples for 4, 18 or 24h. Thereafter, the lungs were lavaged and bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation, cytotoxicity and genotoxicity. Lungs of 24h exposed mice were collected for inspection of pulmonary tissue damage. There were substantial differences in the combustion qualities of old and modern technology appliances. Modern technology appliances had the lowest PM(1) (mg/MJ) emissions, but they induced the highest inflammatory, cytotoxic and genotoxic activities. In contrast, old technology appliances had clearly the highest PM(1) (mg/MJ) emissions, but their effect in the mouse lungs were the lowest. Increased inflammatory activity was associated with ash related components of the emissions, whereas high PAH concentrations were correlating with the smallest detected responses, possibly due to their immunosuppressive effect.


Subject(s)
Biomass , Hot Temperature , Lung/pathology , Pneumonia/etiology , Animals , Bronchoalveolar Lavage Fluid , Male , Mice , Mice, Inbred C57BL , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL