Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 47(3): 435-449.e8, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930659

ABSTRACT

Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.


Subject(s)
Gene Expression Regulation , Immunity, Innate/genetics , Lymphocytes/metabolism , RNA, Long Noncoding/genetics , Regulatory Sequences, Nucleic Acid , Animals , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Chromatin Assembly and Disassembly , Female , Gene Expression Profiling , Genetic Loci , Homeostasis , Inhibitor of Differentiation Protein 2/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/immunology , Male , Mice , Promoter Regions, Genetic , STAT5 Transcription Factor/metabolism , Transcription, Genetic
2.
Alzheimers Dement ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687251

ABSTRACT

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.

3.
Alzheimers Dement ; 20(4): 2794-2816, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426371

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS: We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS: Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION: Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS: Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Mice , Humans , Female , Animals , Alzheimer Disease/pathology , Plaque, Amyloid/pathology , Mice, Inbred C57BL , Microglia/metabolism , Genetic Variation/genetics , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides/metabolism
4.
Nature ; 537(7619): 239-243, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27525555

ABSTRACT

Neutrophils, eosinophils and 'classical' monocytes collectively account for about 70% of human blood leukocytes and are among the shortest-lived cells in the body. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses and minimize the deleterious consequences of prolonged inflammation. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here we identify a long non-coding RNA that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and classical monocytes in response to pro-survival cytokines in mice. To control the lifespan of these cells, Morrbid regulates the transcription of the neighbouring pro-apoptotic gene, Bcl2l11 (also known as Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in individuals with hypereosinophilic syndrome, this long non-coding RNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan.


Subject(s)
Bcl-2-Like Protein 11/genetics , Myeloid Cells/cytology , Myeloid Cells/metabolism , RNA, Long Noncoding/genetics , Alleles , Animals , Antigens, Ly/metabolism , Apoptosis , Bcl-2-Like Protein 11/biosynthesis , Cell Survival , Down-Regulation , Eosinophils/cytology , Eosinophils/metabolism , Female , Humans , Male , Mice , Monocytes/cytology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Promoter Regions, Genetic
5.
PLoS Genet ; 15(5): e1008155, 2019 05.
Article in English | MEDLINE | ID: mdl-31150388

ABSTRACT

Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD.


Subject(s)
Alzheimer Disease/genetics , Disease Models, Animal , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Animals, Wild/genetics , Brain/metabolism , Genetic Variation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid , Presenilin-1/genetics , Reproducibility of Results
6.
Am J Hum Genet ; 102(4): 620-635, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625024

ABSTRACT

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and ß cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by ß cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.


Subject(s)
Calcium-Binding Proteins/genetics , Conserved Sequence , Enhancer Elements, Genetic/genetics , Evolution, Molecular , Islets of Langerhans/pathology , Mutation/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Aged , Alleles , Animals , Base Sequence , Calcium-Binding Proteins/metabolism , Cell Line , Chromatin/metabolism , Chromosomes, Human, Pair 15/genetics , Cytokines/metabolism , DNA, Intergenic/genetics , Humans , Inflammation Mediators/metabolism , Mice , Middle Aged , NFATC Transcription Factors/metabolism , Physical Chromosome Mapping , Polymorphism, Single Nucleotide/genetics , Proinsulin/metabolism , Rats , Risk Factors
7.
Mol Hum Reprod ; 20(7): 630-43, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24670307

ABSTRACT

Genes critical for fertility are highly conserved in mammals. Interspecies DNA sequence variation, resulting in amino acid substitutions and post-transcriptional modifications, including alternative splicing, are a result of evolution and speciation. The mammalian follicle-stimulating hormone receptor (FSHR) gene encodes distinct species-specific forms by alternative splicing. Skipping of exon 2 of the human FSHR was reported in women of North American origin and correlated with low response to ovarian stimulation with exogenous follicle-stimulating hormone (FSH). To determine whether this variant correlated with low response in women of different genetic backgrounds, we performed a blinded retrospective observational study in a Turkish cohort. Ovarian response was determined as low, intermediate or high according to retrieved oocyte numbers after classifying patients in four age groups (<35, 35-37, 38-40, >40). Cumulus cells collected from 96 women undergoing IVF/ICSI following controlled ovarian hyperstimulation revealed four alternatively spliced FSHR products in seven patients (8%): exon 2 deletion in four patients; exon 3 and exons 2 + 3 deletion in one patient each, and a retention of an intron 1 fragment in one patient. In all others (92%) splicing was intact. Alternative skipping of exons 2, 3 or 2 + 3 were exclusive to low responders and was independent of the use of agonist or antagonist. Interestingly, skipping of exon 3 occurs naturally in the ovaries of domestic cats--a good comparative model for human fertility. We tested the signaling potential of human and cat variants after transfection in HEK293 cells and FSH stimulation. None of the splicing variants initiated cAMP signaling despite high FSH doses, unlike full-length proteins. These data substantiate the occurrence of FSHR exon skipping in a subgroup of low responders and suggest that species-specific regulation of FSHR splicing plays diverse roles in mammalian ovarian function.


Subject(s)
Alternative Splicing , Exons , Follicle Stimulating Hormone/pharmacology , Ovary/metabolism , Receptors, FSH/metabolism , Adult , Animals , Cats , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Female , HEK293 Cells , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/therapy , Ovary/drug effects , Ovulation Induction , Receptors, FSH/genetics , Retrospective Studies
8.
Curr Opin Obstet Gynecol ; 26(3): 210-21, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24752003

ABSTRACT

PURPOSE OF REVIEW: Genomic imprinting refers to preferential allele-specific gene expression. DNA methylation-based molecular mechanisms regulate establishment and maintenance of parental imprints during early embryo development and gametogenesis. Because of the coincident timing, a potential association between assisted reproductive technology (ART) procedures and imprinting defects has been investigated in various studies. In this review, we provide an overview of genomic imprinting and present a summary of the relevant clinical data. RECENT FINDINGS: ART procedures affect DNA methylation pattern, parental imprinting status, and imprinted gene expression in the mouse embryo. In humans, several case series suggested an association between ART and imprinting disorders, with a three-fold to six-fold higher prevalence of ART use among children born with Beckwith-Wiedemann syndrome compared to the general population. However, more recent studies failed to support these findings and could not demonstrate an association between imprinting disorders and ARTs, independent of subfertility. SUMMARY: ART procedures may affect methylation status of imprinted regions in the DNA, leading to imprinting disorders. Although the low prevalence of imprinting disorders makes it challenging to perform conclusive clinical trials, further studies in large registries are required to determine the real impact of ARTs on their occurrence.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , Genomic Imprinting/genetics , Infertility/genetics , Reproductive Techniques, Assisted , Animals , Beckwith-Wiedemann Syndrome/epidemiology , Epigenesis, Genetic , Female , Humans , Infant, Newborn , Infertility/therapy , Male , Mice , Pregnancy , Reproductive Techniques, Assisted/adverse effects , Risk Factors
9.
bioRxiv ; 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38187758

ABSTRACT

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

10.
Curr Opin Obstet Gynecol ; 24(3): 141-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22487726

ABSTRACT

PURPOSE OF REVIEW: A multitude of novel embryo assessment strategies using genomics, transcriptomics, proteomics, and metabolomics approaches are being developed in order to improve upon the currently utilized embryo assessment methods based on morphology and cleavage rate. Although these novel technologies promise significant improvements in clinical outcome for women undergoing infertility treatment with in-vitro fertilization, their validation poses significant challenges. In this review, we discuss the appropriate steps to be taken in clinical validation of an embryo assessment test. We then provide a critical analysis of the studies evaluating embryo assessment strategies from a methodological perspective. RECENT FINDINGS: Validation of a novel embryo assessment test requires the determination of appropriate performance parameters (such as sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve), followed by clinical validation using appropriate study design. Finally, benefit from a test, alone or in combination with currently used methods, needs to be tested using a prospective randomized controlled trial study design. Few studies on existing or novel embryo assessment methods provide these parameters. SUMMARY: Validation of a test is a rigorous process that needs to be handled meticulously, using appropriate performance parameters determined by the inherent characteristics of the test and clinical studies with appropriate design.


Subject(s)
Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fertilization in Vitro , Genetic Testing , Humans , Infertility/therapy , Metabolomics , Predictive Value of Tests , Research Design , Validation Studies as Topic
11.
Front Cell Dev Biol ; 10: 898088, 2022.
Article in English | MEDLINE | ID: mdl-35837332

ABSTRACT

Among several interleukin (IL)-6 family members, only IL-6 and IL-11 require a gp130 protein homodimer for intracellular signaling due to lack of intracellular signaling domain in the IL-6 receptor (IL-6R) and IL-11R. We previously reported enhanced decidual IL-6 and IL-11 levels at the maternal-fetal interface with significantly higher peri-membranous IL-6 immunostaining in adjacent interstitial trophoblasts in preeclampsia (PE) vs. gestational age (GA)-matched controls. This led us to hypothesize that competitive binding of these cytokines to the gp130 impairs extravillous trophoblast (EVT) differentiation, proliferation and/or invasion. Using global microarray analysis, the current study identified inhibition of interferon-stimulated gene 15 (ISG15) as the only gene affected by both IL-6 plus IL-11 vs. control or IL-6 or IL-11 treatment of primary human cytotrophoblast cultures. ISG15 immunostaining was specific to EVTs among other trophoblast types in the first and third trimester placental specimens, and significantly lower ISG15 levels were observed in EVT from PE vs. GA-matched control placentae (p = 0.006). Induction of primary trophoblastic stem cell cultures toward EVT linage increased ISG15 mRNA levels by 7.8-fold (p = 0.004). ISG15 silencing in HTR8/SVneo cultures, a first trimester EVT cell line, inhibited invasion, proliferation, expression of ITGB1 (a cell migration receptor) and filamentous actin while increasing expression of ITGB4 (a receptor for hemi-desmosomal adhesion). Moreover, ISG15 silencing further enhanced levels of IL-1ß-induced pro-inflammatory cytokines (CXCL8, IL-6 and CCL2) in HTR8/SVneo cells. Collectively, these results indicate that ISG15 acts as a critical regulator of EVT morphology and function and that diminished ISG15 expression is associated with PE, potentially mediating reduced interstitial trophoblast invasion and enhancing local inflammation at the maternal-fetal interface. Thus, agents inducing ISG15 expression may provide a novel therapeutic approach in PE.

13.
Alzheimers Dement (Amst) ; 13(1): e12140, 2021.
Article in English | MEDLINE | ID: mdl-34027015

ABSTRACT

INTRODUCTION: Genome-wide association studies (GWAS) for late onset Alzheimer's disease (AD) may miss genetic variants relevant for delineating disease stages when using clinically defined case/control as a phenotype due to its loose definition and heterogeneity. METHODS: We use a transfer learning technique to train three-dimensional convolutional neural network (CNN) models based on structural magnetic resonance imaging (MRI) from the screening stage in the Alzheimer's Disease Neuroimaging Initiative consortium to derive image features that reflect AD progression. RESULTS: CNN-derived image phenotypes are significantly associated with fasting metabolites related to early lipid metabolic changes as well as insulin resistance and with genetic variants mapped to candidate genes enriched for amyloid beta degradation, tau phosphorylation, calcium ion binding-dependent synaptic loss, APP-regulated inflammation response, and insulin resistance. DISCUSSION: This is the first attempt to show that non-invasive MRI biomarkers are linked to AD progression characteristics, reinforcing their use in early AD diagnosis and monitoring.

14.
Front Aging Neurosci ; 13: 735524, 2021.
Article in English | MEDLINE | ID: mdl-34707490

ABSTRACT

Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.

15.
Front Aging Neurosci ; 13: 713726, 2021.
Article in English | MEDLINE | ID: mdl-34366832

ABSTRACT

The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.

16.
J Alzheimers Dis ; 73(4): 1421-1434, 2020.
Article in English | MEDLINE | ID: mdl-31929156

ABSTRACT

Alzheimer's disease (AD) is a common form of dementia characterized by amyloid plaque deposition, tau pathology, neuroinflammation, and neurodegeneration. Mouse models recapitulate some key features of AD. For instance, the B6.APP/PS1 model (carrying human transgenes for mutant forms of APP and PSEN1) shows plaque deposition and neuroinflammation involving both astrocytes and microglia beginning around 4-6 months of age. However, significant tau pathology and neurodegeneration are not apparent in this model even when assessed at old age. Therefore, this model is ideal for studying neuroinflammatory responses to amyloid deposition. Here, RNA sequencing of brain and retinal tissue, generalized linear modeling (GLM), functional annotation followed by validation by immunofluorescence was performed in B6.APP/PS1 mice to determine the earliest molecular changes prior to and around the onset of plaque deposition (2-6 months of age). Multiple pathways were shown to be activated in response to amyloid deposition including the JAK/STAT and NALFD pathways. Putative, cell-specific targets of STAT3, a central component of the JAK/STAT pathway, were identified that we propose provide more precise options for assessing the potential for targeting activation of the JAK/STAT pathway as a treatment for human AD. In the retina, GLM predicted activation of vascular-related pathways. However, many of the gene expression changes comparing B6 with B6.APP/PS1 retina samples occurred prior to plaque onset (2 months of age). This suggests retinal changes in B6.APP/PS1 mice may be an artefact of overexpression of mutant forms of APP and PSEN1 providing limited translatability to human AD. Therefore, caution should be taken when using this mouse model to assess the potential of using the eye as a window to the brain for AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Brain/metabolism , Brain/pathology , Presenilin-1/genetics , Retina/metabolism , Retina/pathology , Animals , Base Sequence , Disease Progression , Female , Gene Expression Profiling , Linear Models , Mice , Mice, Inbred C57BL , Mutation , Non-alcoholic Fatty Liver Disease/genetics , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , STAT3 Transcription Factor/genetics , Signal Transduction/genetics
17.
Mol Neurodegener ; 15(1): 67, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33172468

ABSTRACT

BACKGROUND: Late-onset Alzheimer's disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer's have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. RESULTS: This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. CONCLUSIONS: Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Microglia/metabolism , Transcriptome/physiology , Animals , Disease Models, Animal , Gene Regulatory Networks/genetics , Mice
18.
Mol Neurodegener ; 14(1): 50, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31878951

ABSTRACT

BACKGROUND: New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer's disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease. METHODS: We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine's Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor. RESULTS: Mouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe-/-, APOEε4, Clu-/-, and APP/PS1 mouse models. Apoe-/-, GFAP-driven APOEε4, and APP/PS1 driven modules overlapped with AMP-AD inflammation and microglial modules; Clu-/- driven modules overlapped with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules. CONCLUSIONS: This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Alzheimer Disease/genetics , Animals , Brain/pathology , Disease Models, Animal , Mice, Transgenic , Microglia/metabolism
19.
Sci Rep ; 8(1): 16048, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375457

ABSTRACT

Enhancers are cis-acting sequences that regulate transcription rates of their target genes in a cell-specific manner and harbor disease-associated sequence variants in cognate cell types. Many complex diseases are associated with enhancer malfunction, necessitating the discovery and study of enhancers from clinical samples. Assay for Transposase Accessible Chromatin (ATAC-seq) technology can interrogate chromatin accessibility from small cell numbers and facilitate studying enhancers in pathologies. However, on average, ~35% of open chromatin regions (OCRs) from ATAC-seq samples map to enhancers. We developed a neural network-based model, Predicting Enhancers from ATAC-Seq data (PEAS), to effectively infer enhancers from clinical ATAC-seq samples by extracting ATAC-seq data features and integrating these with sequence-related features (e.g., GC ratio). PEAS recapitulated ChromHMM-defined enhancers in CD14+ monocytes, CD4+ T cells, GM12878, peripheral blood mononuclear cells, and pancreatic islets. PEAS models trained on these 5 cell types effectively predicted enhancers in four cell types that are not used in model training (EndoC-ßH1, naïve CD8+ T, MCF7, and K562 cells). Finally, PEAS inferred individual-specific enhancers from 19 islet ATAC-seq samples and revealed variability in enhancer activity across individuals, including those driven by genetic differences. PEAS is an easy-to-use tool developed to study enhancers in pathologies by taking advantage of the increasing number of clinical epigenomes.


Subject(s)
Binding Sites , Enhancer Elements, Genetic , Neural Networks, Computer , Transposases/metabolism , Cell Line , Computational Biology/methods , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , ROC Curve , Sensitivity and Specificity , Sequence Analysis, DNA , Transcriptome , Transposases/chemistry
20.
J Exp Med ; 214(10): 3123-3144, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28904110

ABSTRACT

Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency.


Subject(s)
Aging/physiology , CD8-Positive T-Lymphocytes/physiology , Chromatin/physiology , Adult , Aged , Aging/immunology , Biomarkers , CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic , Female , Humans , Interleukin-7/physiology , Interleukin-7 Receptor alpha Subunit/physiology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/physiology , Male , Signal Transduction/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL