Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 19(9): e1010910, 2023 09.
Article in English | MEDLINE | ID: mdl-37708213

ABSTRACT

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , ABO Blood-Group System/genetics , Plasmodium falciparum/genetics , Case-Control Studies , Kenya , Genotype , Malaria, Falciparum/genetics
2.
J Infect Dis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979599

ABSTRACT

BACKGROUND: The Dantu blood group variant protects against P. falciparum infections but its wider consequences have not been previously explored. Here, we investigate the impact of Dantu on susceptibility to bacteraemia. METHODS: We conducted a case-control study in children presenting with community-acquired bacteraemia to Kilifi County Hospital in Kenya between 1998 and 2010. We used logistic regression to test for associations between the Dantu marker SNP rs186873296 A>G and both all-cause and pathogen-specific bacteraemia under an additive model. We used date of admission as a proxy measure of malaria transmission intensity, given known differences in malaria prevalence over the course of the study. RESULTS: Dantu was associated with protection from all-cause bacteraemia (OR=0.81, p=0.014), the association being greatest in homozygotes (OR=0.30, p=0.013). This protection was shared across the major bacterial pathogens but, notably, was only significant during the era of high malaria-transmission pre-2003 (OR=0.79, p=0.023). CONCLUSIONS: Consistent with previous studies showing the indirect impact on bacteraemia risk of other malaria-associated red cell variants, our study also shows that Dantu is protective against bacteraemia via its effect on malaria risk. Dantu does not appear to be under balancing selection through an increased risk of bacterial infections.

3.
BMC Med ; 21(1): 397, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37858129

ABSTRACT

BACKGROUND: Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS: This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS: One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS: In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION: The trial is registered at ISRCTN 11594437.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , alpha-Thalassemia , Male , Female , Humans , Child , Child, Preschool , Primaquine , Antimalarials/adverse effects , alpha-Thalassemia/drug therapy , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/chemically induced , Hemoglobins/analysis , Plasmodium falciparum
4.
Clin Infect Dis ; 74(2): 288-293, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33893491

ABSTRACT

BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , Health Personnel , Humans , Kenya/epidemiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
5.
N Engl J Med ; 381(5): 420-431, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31365800

ABSTRACT

BACKGROUND: Severe anemia (hemoglobin level, <6 g per deciliter) is a leading cause of hospital admission and death in children in sub-Saharan Africa. The World Health Organization recommends transfusion of 20 ml of whole-blood equivalent per kilogram of body weight for anemia, regardless of hemoglobin level. METHODS: In this factorial, open-label trial, we randomly assigned Ugandan and Malawian children 2 months to 12 years of age with a hemoglobin level of less than 6 g per deciliter and severity features (e.g., respiratory distress or reduced consciousness) to receive immediate blood transfusion with 20 ml per kilogram or 30 ml per kilogram. Three other randomized analyses investigated immediate as compared with no immediate transfusion, the administration of postdischarge micronutrients, and postdischarge prophylaxis with trimethoprim-sulfamethoxazole. The primary outcome was 28-day mortality. RESULTS: A total of 3196 eligible children (median age, 37 months; 2050 [64.1%] with malaria) were assigned to receive a transfusion of 30 ml per kilogram (1598 children) or 20 ml per kilogram (1598 children) and were followed for 180 days. A total of 1592 children (99.6%) in the higher-volume group and 1596 (99.9%) in the lower-volume group started transfusion (median, 1.2 hours after randomization). The mean (±SD) volume of total blood transfused per child was 475±385 ml and 353±348 ml, respectively; 197 children (12.3%) and 300 children (18.8%) in the respective groups received additional transfusions. Overall, 55 children (3.4%) in the higher-volume group and 72 (4.5%) in the lower-volume group died before 28 days (hazard ratio, 0.76; 95% confidence interval [CI], 0.54 to 1.08; P = 0.12 by log-rank test). This finding masked significant heterogeneity in 28-day mortality according to the presence or absence of fever (>37.5°C) at screening (P=0.001 after Sidak correction). Among the 1943 children (60.8%) without fever, mortality was lower with a transfusion volume of 30 ml per kilogram than with a volume of 20 ml per kilogram (hazard ratio, 0.43; 95% CI, 0.27 to 0.69). Among the 1253 children (39.2%) with fever, mortality was higher with 30 ml per kilogram than with 20 ml per kilogram (hazard ratio, 1.91; 95% CI, 1.04 to 3.49). There was no evidence of differences between the randomized groups in readmissions, serious adverse events, or hemoglobin recovery at 180 days. CONCLUSIONS: Overall mortality did not differ between the two transfusion strategies. (Funded by the Medical Research Council and Department for International Development, United Kingdom; TRACT Current Controlled Trials number, ISRCTN84086586.).


Subject(s)
Anemia/therapy , Blood Transfusion , Hemoglobins/analysis , Anemia/complications , Anemia/mortality , Blood Transfusion/economics , Child , Child, Preschool , Cost-Benefit Analysis , Female , Fever/complications , Follow-Up Studies , Health Care Costs , Humans , Infant , Length of Stay/economics , Malaria/complications , Malawi/epidemiology , Male , Patient Readmission/statistics & numerical data , Transfusion Reaction/epidemiology , Uganda/epidemiology
6.
N Engl J Med ; 381(5): 407-419, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31365799

ABSTRACT

BACKGROUND: The World Health Organization recommends not performing transfusions in African children hospitalized for uncomplicated severe anemia (hemoglobin level of 4 to 6 g per deciliter and no signs of clinical severity). However, high mortality and readmission rates suggest that less restrictive transfusion strategies might improve outcomes. METHODS: In this factorial, open-label, randomized, controlled trial, we assigned Ugandan and Malawian children 2 months to 12 years of age with uncomplicated severe anemia to immediate transfusion with 20 ml or 30 ml of whole-blood equivalent per kilogram of body weight, as determined in a second simultaneous randomization, or no immediate transfusion (control group), in which transfusion with 20 ml of whole-blood equivalent per kilogram was triggered by new signs of clinical severity or a drop in hemoglobin to below 4 g per deciliter. The primary outcome was 28-day mortality. Three other randomizations investigated transfusion volume, postdischarge supplementation with micronutrients, and postdischarge prophylaxis with trimethoprim-sulfamethoxazole. RESULTS: A total of 1565 children (median age, 26 months) underwent randomization, with 778 assigned to the immediate-transfusion group and 787 to the control group; 984 children (62.9%) had malaria. The children were followed for 180 days, and 71 (4.5%) were lost to follow-up. During the primary hospitalization, transfusion was performed in all the children in the immediate-transfusion group and in 386 (49.0%) in the control group (median time to transfusion, 1.3 hours vs. 24.9 hours after randomization). The mean (±SD) total blood volume transfused per child was 314±228 ml in the immediate-transfusion group and 142±224 ml in the control group. Death had occurred by 28 days in 7 children (0.9%) in the immediate-transfusion group and in 13 (1.7%) in the control group (hazard ratio, 0.54; 95% confidence interval [CI], 0.22 to 1.36; P = 0.19) and by 180 days in 35 (4.5%) and 47 (6.0%), respectively (hazard ratio, 0.75; 95% CI, 0.48 to 1.15), without evidence of interaction with other randomizations (P>0.20) or evidence of between-group differences in readmissions, serious adverse events, or hemoglobin recovery at 180 days. The mean length of hospital stay was 0.9 days longer in the control group. CONCLUSIONS: There was no evidence of differences in clinical outcomes over 6 months between the children who received immediate transfusion and those who did not. The triggered-transfusion strategy in the control group resulted in lower blood use; however, the length of hospital stay was longer, and this strategy required clinical and hemoglobin monitoring. (Funded by the Medical Research Council and Department for International Development; TRACT Current Controlled Trials number, ISRCTN84086586.).


Subject(s)
Anemia/therapy , Blood Transfusion , Hemoglobins/analysis , Time-to-Treatment , Anemia/complications , Anemia/mortality , Blood Transfusion/economics , Child , Child, Preschool , Cost-Benefit Analysis , Female , Follow-Up Studies , Health Care Costs , Humans , Infant , Length of Stay/economics , Malaria/complications , Malawi/epidemiology , Male , Patient Readmission/statistics & numerical data , Transfusion Reaction/epidemiology , Uganda/epidemiology
7.
Haematologica ; 107(7): 1589-1598, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34498446

ABSTRACT

Malaria and invasive non-typhoidal Salmonella (NTS) are life-threatening infections that often co-exist in African children. The iron-regulatory hormone hepcidin is highly upregulated during malaria and controls the availability of iron, a critical nutrient for bacterial growth. We investigated the relationship between Plasmodium falciparum malaria and NTS bacteremia in all pediatric admissions aged <5 years between August 1998 and October 2019 (n=75,034). We then assayed hepcidin and measures of iron status in five groups: (1) children with concomitant severe malarial anemia (SMA) and NTS (SMA+NTS, n=16); and in matched children with (2) SMA (n=33); (3) NTS (n=33); (4) cerebral malaria (CM, n=34); and (5) community-based children. SMA and severe anemia without malaria were associated with a 2-fold or more increased risk of NTS bacteremia, while other malaria phenotypes were not associated with increased NTS risk. Children with SMA had lower hepcidin/ferritin ratios (0.10; interquartile range [IQR]: 0.03-0.19) than those with CM (0.24; IQR: 0.14-0.69; P=0.006) or asymptomatic malaria (0.19; IQR: 0.09-0.46; P=0.01) indicating suppressed hepcidin levels. Children with SMA+NTS had lower hepcidin levels (9.3 ng/mL; IQR: 4.7-49.8) and hepcidin/ferritin ratios (0.03; IQR: 0.01-0.22) than those with NTS alone (105.8 ng/mL; IQR: 17.3-233.3; P=0.02 and 0.31; IQR: 0.06-0.66; P=0.007, respectively). Since hepcidin degrades ferroportin on the Salmonella-containing vacuole, we hypothesize that reduced hepcidin in children with SMA might contribute to NTS growth by modulating iron availability for bacterial growth. Further studies are needed to understand how the hepcidin-ferroportin axis might mediate susceptibility to NTS in severely anemic children.


Subject(s)
Anemia , Bacteremia , Malaria, Falciparum , Malaria , Anemia/complications , Bacteremia/complications , Bacteremia/microbiology , Child , Ferritins , Hepcidins , Humans , Iron , Kenya/epidemiology , Malaria/complications , Malaria, Falciparum/complications , Salmonella
8.
Vox Sang ; 117(12): 1360-1367, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36218235

ABSTRACT

BACKGROUND AND OBJECTIVES: Adequate supplies of donor blood remain a major challenge in sub-Saharan Africa. This is exacerbated by a lack of confirmatory testing for transfusion-transmitted infections by blood transfusion services (BTS), leading to significant blood disposal owing to putatively high seroprevalence rates amongst Ugandan blood donors. We aimed to ascertain the false discovery rate of the Architect anti-hepatitis C virus (HCV) screening assay and categorize screen-reactive samples into three groups: presumed false positive, active and past infection, and develop an algorithm for confirmatory testing. MATERIALS AND METHODS: A total of 470 screen-reactive HCV blood donations were retested using the Architect anti-HCV assay, an alternative antibody test (SD Biosensor) and a core antigen (cAg) test. signal-to cut-off (S/CO) ratios and pre-analytical factors (centrifugation speed, haemolysis check, time between collection and testing) were recorded. Based on the S/CO ratio evaluation, we propose a testing algorithm to guide supplemental tests. RESULTS: The false discovery rate of the Architect anti-HCV assay was 0.84 as 395/470 (84%) screen-reactive samples had no evidence of HCV infection (SD Biosensor and cAg negative) (presumed false positive), 38/470 (8.1%) were antigenaemic, and 32/470 (6.8%) had evidence of past infection. The median S/CO ratios of the presumed false-positive and active infection samples were 1.8 and 17.3, respectively. The positive predictive value of HCV positivity in samples with ratios above 12 was 91.8%. On retesting, 104/470 (22.1%) samples became negative. CONCLUSION: The Architect anti-HCV assay has a very high false discovery rate in Ugandan BTSs, leading to excessive blood disposal. Pre-analytical factors likely contribute to this. An introduction of confirmatory testing using an algorithm based on S/CO ratio evaluation could limit unnecessary blood wastage and donor deferral.


Subject(s)
Blood Donors , Transfusion Reaction , Humans , Seroepidemiologic Studies , Mass Screening , Hepacivirus , Hepatitis C Antibodies , Sensitivity and Specificity
9.
Am J Hematol ; 97(5): 527-536, 2022 05.
Article in English | MEDLINE | ID: mdl-35147242

ABSTRACT

Sickle cell anemia (SCA) is common in sub-Saharan Africa where approximately 1% of births are affected. Severe anemia is a common cause for hospital admission within the region yet few studies have investigated the contribution made by SCA. The Transfusion and Treatment of severe anemia in African Children Trial (ISRCTN84086586) investigated various treatment strategies in 3983 children admitted with severe anemia (hemoglobin < 6.0 g/dl) based on two severity strata to four hospitals in Africa (three Uganda and one Malawi). Children with known-SCA were excluded from the uncomplicated stratum and capped at 25% in the complicated stratum. All participants were genotyped for SCA at trial completion. SCA was rare in Malawi (six patients overall), so here we focus on the participants recruited in Uganda. We present baseline characteristics by SCA status and propose an algorithm for identifying children with unknown-SCA. Overall, 430 (12%) and 608 (17%) of the 3483 Ugandan participants had known- or unknown-SCA, respectively. Children with SCA were less likely to be malaria-positive and more likely to have an affected sibling, have gross splenomegaly, or to have received a previous blood transfusion. Most outcomes, including mortality and readmission, were better in children with either known or unknown-SCA than non-SCA children. A simple algorithm based on seven admission criteria detected 73% of all children with unknown-SCA with a number needed to test to identify one new SCA case of only two. Our proposed algorithm offers an efficient and cost-effective approach to identifying children with unknown-SCA among all children admitted with severe anemia to African hospitals where screening is not widely available.


Subject(s)
Anemia, Sickle Cell , Algorithms , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/therapy , Child , Hospitals , Humans , Malawi/epidemiology , Uganda/epidemiology
10.
Pediatr Crit Care Med ; 23(7): 502-513, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35446796

ABSTRACT

OBJECTIVES: Fluid bolus resuscitation in African children is harmful. Little research has evaluated physiologic effects of maintenance-only fluid strategy. DESIGN: We describe the efficacy of fluid-conservative resuscitation of septic shock using case-fatality, hemodynamic, and myocardial function endpoints. SETTING: Pediatric wards of Mbale Regional Referral Hospital, Uganda, and Kilifi County Hospital, Kenya, conducted between October 2013 and July 2015. Data were analysed from August 2016 to July 2019. PATIENTS: Children (≥ 60 d to ≤ 12 yr) with severe febrile illness and clinical signs of impaired perfusion. INTERVENTIONS: IV maintenance fluid (4 mL/kg/hr) unless children had World Health Organization (WHO) defined shock (≥ 3 signs) where they received two fluid boluses (20 mL/kg) and transfusion if shock persisted. Clinical, electrocardiographic, echocardiographic, and laboratory data were collected at presentation, during resuscitation and on day 28. Outcome measures were 48-hour mortality, normalization of hemodynamics, and cardiac biomarkers. MEASUREMENT AND MAIN RESULTS: Thirty children (70% males) were recruited, six had WHO shock, all of whom died (6/6) versus three of 24 deaths in the non-WHO shock. Median fluid volume received by survivors and nonsurvivors were similar (13 [interquartile range (IQR), 9-32] vs 30 mL/kg [28-61 mL/kg], z = 1.62, p = 0.23). By 24 hours, we observed increases in median (IQR) stroke volume index (39 mL/m 2 [32-42 mL/m 2 ] to 47 mL/m 2 [41-49 mL/m 2 ]) and a measure of systolic function: fractional shortening from 30 (27-33) to 34 (31-38) from baseline including children managed with no-bolus. Children with WHO shock had a higher mean level of cardiac troponin ( t = 3.58; 95% CI, 1.24-1.43; p = 0.02) and alpha-atrial natriuretic peptide ( t = 16.5; 95% CI, 2.80-67.5; p < 0.01) at admission compared with non-WHO shock. Elevated troponin (> 0.1 µg/mL) and hyperlactatemia (> 4 mmol/L) were putative makers predicting outcome. CONCLUSIONS: Maintenance-only fluid therapy normalized clinical and myocardial perturbations in shock without compromising cardiac or hemodynamic function whereas fluid-bolus management of WHO shock resulted in high fatality. Troponin and lactate biomarkers of cardiac dysfunction could be promising outcome predictors in pediatric septic shock in resource-limited settings.


Subject(s)
Shock, Septic , Shock , Biomarkers , Child , Female , Fluid Therapy/methods , Humans , Male , Shock/therapy , Shock, Septic/therapy , Troponin , Uganda
11.
Clin Infect Dis ; 73(7): e2415-e2423, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32772115

ABSTRACT

BACKGROUND: Most previous studies support a direct link between total parasite load and the clinical severity of Plasmodium falciparum malaria infections. METHODS: We estimated P. falciparum parasite loads in 3 groups of children with malaria infections of differing severity: (1) children with World Health Organization-defined severe malaria (n = 1544), (2) children admitted with malaria but without features of severity (n = 200), and (3) children in the community with asymptomatic parasitemia (n = 33). RESULTS: Peripheral parasitemias were highest in those with uncomplicated malaria (geometric mean [GM] parasite count, 111 064/µL; 95% confidence interval, CI, 86 798-141 819/µL), almost 3 times higher than in those with severe malaria (39 588/µL; 34 990-44 791/µL) and >100 times higher than in those with asymptomatic malaria (1092/µL; 523-2280/µL). However, the GM P. falciparum histidine-rich protein 2 (PfHRP2) values (95% CI) increased with severity, being 7 (4-12) ng/mL in asymptomatic malaria, 843 (655-1084) ng/mL in uncomplicated malaria, and 1369 (1244-1506) ng/mL in severe malaria. PfHRP2 concentrations were markedly lower in the subgroup of patients with severe malaria and concomitant invasive bacterial infections of blood or cerebrospinal fluid (GM concentration, 312 ng/mL; 95% CI, 175-557 ng/mL; P < .001) than in those without such infections (1439 ng/mL; 1307-1584; P < .001). CONCLUSIONS: The clinical severity of malaria infections related strongly to the total burden of P. falciparum parasites. A quantitative test for plasma concentrations of PfHRP2 could be useful in identifying children at the greatest clinical risk and identifying critically ill children in whom malaria is not the primary cause.


Subject(s)
Antigens, Protozoan/blood , Malaria, Falciparum , Protozoan Proteins/blood , Child , Humans , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Parasite Load , Plasmodium falciparum
12.
Br J Haematol ; 193(5): 894-901, 2021 06.
Article in English | MEDLINE | ID: mdl-33993492

ABSTRACT

Owing to the rapid turnaround time in the assessment of haemoglobin level by point-of-care tests (POC Hb), these have grown in popularity and scope in large parts of the world. However, whilst POC testing for malaria and HIV remains has been integrated into patient management in Africa, the use of POC haemoglobin testing remains neglected by health services. The main users of transfusions (paediatric, maternity and trauma services) present largely as emergencies. Ward-based POC Hb could result in more rapid and accurate diagnosis of anaemia, contributing to saving of lives and at the same time reduce unnecessary transfusions which deplete the limited supplies of donated blood in Africa. Severe anaemia requiring transfusion is a major cause of paediatric admission in Africa. At a dissemination meeting to discuss the results of a large phase III paediatric transfusion trial and steps to implementation of the findings participants strongly recommended that one of the most pressing actions required was to prioritise the use of POC haemoglobin testing. This would facilitate implementation of the new transfusion algorithm, developed at the meeting, which refines patient management including blood transfusions. We present the rationale for the strongly recommended prioritisation of POC Hb, using paediatric transfusion as an exemplar.


Subject(s)
Algorithms , Anemia , Blood Transfusion , Hemoglobins/metabolism , Point-of-Care Testing , Anemia/blood , Anemia/diagnosis , Anemia/therapy , Child , Child, Preschool , Clinical Trials, Phase III as Topic , Female , Humans , Infant , Malawi , Male , Randomized Controlled Trials as Topic , Uganda
13.
Br J Haematol ; 193(6): 1247-1259, 2021 06.
Article in English | MEDLINE | ID: mdl-33955552

ABSTRACT

The phase III Transfusion and Treatment of severe anaemia in African Children Trial (TRACT) found that conservative management of uncomplicated severe anaemia [haemoglobin (Hb) 40-60 g/l] was safe, and that transfusion volume (20 vs. 30 ml/kg whole blood equivalent) for children with severe anaemia (Hb <60 g/l) had strong but opposing effects on mortality, depending on fever status (>37·5°C). In 2020 a stakeholder meeting of paediatric and blood transfusion groups from Africa reviewed the results and additional analyses. Among all 3196 children receiving an initial transfusion there was no evidence that nutritional status, presence of shock, malaria parasite burden or sickle cell disease status influenced outcomes or modified the interaction with fever status on volume required. Fever status at the time of ordering blood was a reliable determinant of volume required for optimal outcome. Elevated heart and respiratory rates normalised irrespective of transfusion volume and without diuretics. By consensus, a transfusion management algorithm was developed, incorporating three additional measurements of Hb post-admission, alongside clinical monitoring. The proposed algorithm should help clinicians safely implement findings from TRACT. Further research should assess its implementation in routine clinical practice.


Subject(s)
Algorithms , Anemia, Sickle Cell/therapy , Blood Transfusion , Consensus , Malaria/therapy , Africa/epidemiology , Anemia, Sickle Cell/epidemiology , Child , Child, Preschool , Humans , Malaria/epidemiology , Male , Severity of Illness Index
14.
BMC Public Health ; 21(1): 1480, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34325680

ABSTRACT

BACKGROUND: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions. METHODS: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering. RESULTS: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≥2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48 (95% CI 1.63-3.78), p < 0.001); ≥2 hospital admissions in the preceding 12 months (1.44(1.19-1.74), p < 0.001); history of transfusion (1.48(1.13-1.93), p = 0.005); and missing ≥1 trial medication dose (proxy for care quality) (1.43 (1.21-1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features), who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47-0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47-0.76), p < 0.001); younger-age (1.07 (1.03-1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46-0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23-2.44) and 1.46(1.18-1.82) respectively compared to no splenomegaly. Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe malaria. CONCLUSIONS: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important. TRIAL REGISTRATION: ISRCTN ISRCTN84086586 .


Subject(s)
Anemia , HIV Infections , Anemia/epidemiology , Anemia/therapy , Child , Humans , Incidence , Malawi/epidemiology , Patient Readmission , Uganda/epidemiology
15.
BMC Med ; 18(1): 92, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32340612

ABSTRACT

BACKGROUND: Most of the world's sickle cell disease (SCD) burden is in Africa, where it is a major contributor to child morbidity and mortality. Despite the low cost of many preventive SCD interventions, insufficient resources have been allocated, and progress in alleviating the SCD burden has lagged behind other public-health efforts in Africa. The recent announcement of massive new funding for research into curative SCD therapies is encouraging in the long term, but over the next few decades, it is unlikely to help Africa's SCD children substantially. MAIN DISCUSSION: A major barrier to progress has been the absence of large-scale early-life screening. Most SCD deaths in Africa probably occur before cases are even diagnosed. In the last few years, novel inexpensive SCD point-of-care test kits have become widely available and have been deployed successfully in African field settings. These kits could potentially enable universal early SCD screening. Other recent developments are the expansion of the pneumococcal conjugate vaccine towards near-universal coverage, and the demonstrated safety, efficacy, and increasing availability and affordability of hydroxyurea across the continent. Most elements of standard healthcare for SCD children that are already proven to work in the West, could and should now be implemented at scale in Africa. National and continental SCD research and care networks in Africa have also made substantial progress, assembling care guidelines and enabling the deployment and scale-up of SCD public-health systems. Substantial logistical, cultural, and awareness barriers remain, but with sufficient financial and political will, similar barriers have already been overcome in efforts to control other diseases in Africa. CONCLUSION AND RECOMMENDATIONS: Despite remaining challenges, several high-SCD-burden African countries have the political will and infrastructure for the rapid implementation and scale-up of comprehensive SCD childcare programs. A globally funded effort starting with these countries and expanding elsewhere in Africa and to other high-burden countries, including India, could transform the lives of SCD children worldwide and help countries to attain their Sustainable Development Goals. This endeavor would also require ongoing research focused on the unique needs and challenges of SCD patients, and children in particular, in regions of high prevalence.


Subject(s)
Anemia, Sickle Cell/therapy , Africa , Child, Preschool , Female , Humans , Infant , Male
16.
BMC Med ; 18(1): 148, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32536341

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria. G6PD deficiency increases risk of severe malarial anemia, a key determinant of invasive bacterial disease in malaria-endemic settings. The pneumococcus is a leading cause of invasive bacterial infection and death in African children. The effect of G6PD deficiency on risk of pneumococcal disease is undefined. We hypothesized that G6PD deficiency increases pneumococcal disease risk and that this effect is dependent upon malaria. METHODS: We performed a genetic case-control study of pneumococcal bacteremia in Kenyan children stratified across a period of falling malaria transmission between 1998 and 2010. RESULTS: Four hundred twenty-nine Kenyan children with pneumococcal bacteremia and 2677 control children were included in the study. Among control children, G6PD deficiency, secondary to the rs1050828 G>A mutation, was common, with 11.2% (n = 301 of 2677) being hemi- or homozygotes and 33.3% (n = 442 of 1329) of girls being heterozygotes. We found that G6PD deficiency increased the risk of pneumococcal bacteremia, but only during a period of high malaria transmission (P = 0.014; OR 2.33, 95% CI 1.19-4.57). We estimate that the population attributable fraction of G6PD deficiency on risk of pneumococcal bacteremia in areas under high malaria transmission is 0.129. CONCLUSIONS: Our data demonstrate that G6PD deficiency increases risk of pneumococcal bacteremia in a manner dependent on malaria. At the population level, the impact of G6PD deficiency on invasive pneumococcal disease risk in malaria-endemic regions is substantial. Our study highlights the infection-associated morbidity and mortality conferred by G6PD deficiency in malaria-endemic settings and adds to our understanding of the potential indirect health benefits of improved malaria control.


Subject(s)
Bacteremia/etiology , Glucosephosphate Dehydrogenase/adverse effects , Pneumococcal Infections/etiology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Kenya , Male
17.
Malar J ; 19(1): 322, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883291

ABSTRACT

BACKGROUND: Few recent descriptions of severe childhood malaria have been published from high-transmission regions. In the current study, the clinical epidemiology of severe malaria in Mbale, Eastern Uganda, is described, where the entomological inoculation rate exceeds 100 infective bites per year. METHODS: A prospective descriptive study was conducted to determine the prevalence, clinical spectrum and outcome of severe Plasmodium falciparum malaria at Mbale Regional Referral Hospital in Eastern Uganda. All children aged 2 months-12 years who presented on Mondays to Fridays between 8.00 am and 5.00 pm from 5th May 2011 until 30th April 2012 were screened for parasitaemia. Clinical and laboratory data were then collected from all P. falciparum positive children with features of WHO-defined severe malaria by use of a standardized proforma. RESULTS: A total of 10 208 children were screened of which 6582 (64%) had a positive blood film. Of these children, 662 (10%) had clinical features of severe malaria and were consented for the current study. Respiratory distress was the most common severity feature (554; 83.7%), while 365/585 (62.4%) had hyperparasitaemia, 177/662 (26.7%) had clinical jaundice, 169 (25.5%) had severe anaemia, 134/660 (20.2%) had hyperlactataemia (lactate ≥ 5 mmol/L), 93 (14.0%) had passed dark red or black urine, 52 (7.9%) had impaired consciousness and 49/662 (7.4%) had hypoxaemia (oxygen saturations < 90%). In-hospital mortality was 63/662 (9.5%) overall but was higher in children with either cerebral malaria (33.3%) or severe anaemia (19.5%). Factors that were independently associated with mortality on multivariate analysis included severe anaemia [odds ratio (OR) 5.36; 2.16-1.32; P = 0.0002], hyperlactataemia (OR 3.66; 1.72-7.80; P = 0.001), hypoxaemia (OR) 3.64 (95% CI 1.39-9.52; P = 0.008), and hepatomegaly (OR 2.29; 1.29-4.06; P = 0.004). No independent association was found between mortality and either coma or hyperparasitaemia. CONCLUSIONS: Severe childhood malaria remains common in Eastern Uganda where it continues to be associated with high mortality. An unusually high proportion of children with severe malaria had jaundice or gave a history of having recently passed dark red or black urine, an issue worthy of further investigation.


Subject(s)
Anemia/epidemiology , Malaria, Cerebral/epidemiology , Malaria, Falciparum/epidemiology , Parasitemia/epidemiology , Anemia/complications , Anemia/mortality , Anemia/parasitology , Child , Child, Preschool , Female , Hospitals , Humans , Infant , Malaria, Cerebral/complications , Malaria, Cerebral/mortality , Malaria, Cerebral/parasitology , Malaria, Falciparum/complications , Malaria, Falciparum/mortality , Malaria, Falciparum/parasitology , Male , Parasitemia/complications , Parasitemia/mortality , Parasitemia/parasitology , Prevalence , Prospective Studies , Uganda/epidemiology
18.
Am J Hum Genet ; 98(6): 1092-1100, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27236921

ABSTRACT

Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.


Subject(s)
Bacteremia/genetics , Pneumonia, Pneumococcal/genetics , Polymorphism, Genetic/genetics , RNA, Long Noncoding/genetics , Streptococcus pneumoniae/genetics , Adolescent , Bacteremia/microbiology , Bacteremia/pathology , Case-Control Studies , Child , Child, Preschool , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Risk Factors
19.
BMC Med ; 17(1): 122, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31256761

ABSTRACT

BACKGROUND: World Health Organization rehydration management guidelines (plan C) for severe dehydration are widely practiced in resource-poor settings, but never formally evaluated in a trial. The Fluid Expansion as a Supportive Therapy trial raised concerns regarding the safety of bolus therapy for septic shock, warranting a formal evaluation of rehydration therapy for gastroenteritis. METHODS: A multi-centre open-label phase II randomised controlled trial evaluated two rehydration strategies in 122 Ugandan/Kenyan children aged 60 days to 12 years with severe dehydration secondary to gastroenteritis. We compared the safety and efficacy of standard rapid rehydration using Ringer's lactate (100 ml/kg over 3 h (6 h if < 1 year), incorporating 0.9% saline boluses for children with shock (plan C) versus slower rehydration: 100 ml/kg Ringer's lactate over 8 h (all ages) without boluses (slow: experimental). The primary outcome was the frequency of serious adverse events (SAE) within 48 h including cardiovascular, respiratory and neurological complications. Secondary outcomes included clinical, biochemical and physiological measures of response to treatment by intravenous rehydration. RESULTS: One hundred twenty-two eligible children (median (IQR) age 8 (6-12) months) were randomised to plan C (n = 61) or slow (n = 61), with two (2%) lost to follow-up at day 7). Following randomisation mean (SD) time to start intravenous rehydration started was 15 min (18) in both arms. Mean (SD) fluid received by 1 hour was greater in plan C (mean 20.2 ml/kg (12.2) and 33.1 ml/kg (17) for children < 1 year and >- 1 year respectively) versus 10.4 ml/kg (6.6) in slow arm. By 8 hours volume received were similar mean (SD) plan C: 96.3 ml/kg (15.6) and 97.8 ml/kg (10.0) for children < 1 and ≥ 1 year respectively vs 93.2 ml/kg (12.2) in slow arm. By 48-h, three (5%) plan C vs two (3%) slow had an SAE (risk ratio 0.67, 95% CI 0.12-3.85, p = 0.65). There was no difference in time to the correction of dehydration (p = 0.9) or time to discharge (p = 0.8) between groups. Atrial natriuretic peptide levels rose substantially by 8 hours in both arms, which persisted to day 7. Day 7 weights suggested only 33 (29%) could be retrospectively classified as severely dehydration (≥ 10% weight loss). CONCLUSION: Slower rehydration over 8 hours appears to be safe, easier to implement than plan C. Future large trials with mortality as the primary endpoint are warranted. TRIAL REGISTRATION: ISRCTN67518332 . Date applied 31 August 2016.


Subject(s)
Dehydration/diagnosis , Fluid Therapy/methods , Gastroenteritis/therapy , Child , Child, Preschool , Dehydration/pathology , Dehydration/therapy , Female , Gastroenteritis/pathology , Humans , Infant , Kenya , Male , Retrospective Studies
20.
Vox Sang ; 114(4): 340-348, 2019 May.
Article in English | MEDLINE | ID: mdl-30838664

ABSTRACT

BACKGROUND AND OBJECTIVES: Paediatric blood transfusion for severe anaemia in hospitals in sub-Saharan Africa remains common. Yet, reports describing the haematological quality of donor blood or storage duration in routine practice are very limited. Both factors are likely to affect transfusion outcomes. MATERIALS AND METHODS: We undertook three audits examining the distribution of pack types, haematological quality and storage duration of donor blood used in a paediatric clinical trial of blood at four hospitals in Africa (Uganda and Malawi). RESULTS: The overall distribution of whole blood, packed cells (plasma-reduced by centrifugation) and red cell concentrates (RCC) (plasma-reduced by gravity-dependent sedimentation) used in a randomised trial was 40·7% (N = 1215), 22·4% (N = 669) and 36·8% (N = 1099), respectively. The first audit found similar median haematocrits of 57·0% (50·0,74·0), 64·0% (52·0,72·5; P = 0·238 vs. whole blood) and 56·0% (48·0,67·0; P = 0·462) in whole blood, RCC and packed cells, respectively, which resulted from unclear pack labelling by blood transfusion services (BTS). Re-training of the BTS, hospital blood banks and clinical teams led to, in subsequent audits, significant differences in median haematocrit and haemoglobins across the three pack types and values within expected ranges. Median storage duration time was 12 days (IQR: 6, 19) with 18·2% (537/2964) over 21 days in storage. Initially, 9 (2·8%) packs were issued past the recommended duration of storage, dropping to 0·3% (N = 7) in the third audit post-training. CONCLUSION: The study highlights the importance of close interactions and education between BTS and clinical services and the importance of haemovigilance to ensure safe transfusion practice.


Subject(s)
Anemia/therapy , Blood Banks/standards , Blood Donors , Blood Transfusion/methods , Quality Control , Anemia/blood , Child , Hematocrit , Hematology/standards , Hemoglobins , Hospitals , Humans , Malawi , Pediatrics/methods , Quality Assurance, Health Care , Randomized Controlled Trials as Topic , Refrigeration , Reproducibility of Results , Specimen Handling , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL