ABSTRACT
PURPOSE: Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS: We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to ß-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS: The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION: The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.
Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Fluorodeoxyglucose F18 , Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Aniline Compounds , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , PerfusionABSTRACT
PURPOSE: Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). [18F]SiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS: Eight NET patients received a [18F]SiTATE-PET/CT (250 ± 66 MBq) with repeated emission scans (10, 30, 60, 120, 180 min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS: After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004 mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120 min images. CONCLUSION: [18F]SiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180 min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of [18F]SiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120 min, followed by 60 min after injection.
Subject(s)
Neuroendocrine Tumors , Positron Emission Tomography Computed Tomography , Adult , Computers , Female , Humans , Male , Neuroendocrine Tumors/diagnostic imaging , Positron-Emission Tomography , Radiometry , Tissue DistributionABSTRACT
BACKGROUND: This study aimed to assess 68Ga-DOTA-TATE (-TOC) PET/CT quantitative parameters in monitoring and predicting everolimus response in neuroendocrine tumor (NET) patients with hepatic metastases (NELM). PATIENTS AND METHODS: This retrospective analysis included 29 patients with 62 target lesions undergoing everolimus treatment and pre-therapy, and follow-up 68Ga-DOTA-TATE (-TOC) PET/CT scans. Response evaluation utilized progression-free survival (PFS) categorized as responders (R; PFS > 6 months) and non-responders (NR; PFS ≤ 6 months). Lesion size and density, along with maximum and median standardize uptake value (SUV) in target lesions, liver, and spleen were assessed. Tumor-to-spleen (T/S) and tumor-to-liver (T/L) ratios were calculated, including the tumor-to-spleen (T/S) ratio and tumor-to-liver (T/L) ratio (using SUVmax/SUVmax, SUVmax/SUVmean, and SUVmean/SUVmean). RESULTS: PET/CT scans were acquired 19 days (interquartile range [IQR] 69 days) pre-treatment and 127 days (IQR 74 days) post-starting everolimus. The overall median PFS was 264 days (95% CI: 134-394 days). R exhibited significant decreases in Tmax/Lmax and Tmean/Lmax ratios compared to NR (p = 0.01). In univariate Cox regression, Tmean/Lmax ratio was the sole prognostic parameter associated with PFS (HR 0.5, 95% CI 0.28-0.92, p = 0.03). Percentage changes in T/L and T/S ratios were significant predictors of PFS, with the highest area under curve (AUC) for the percentage change of Tmean/Lmax (AUC = 0.73). An optimal threshold of < 2.5% identified patients with longer PFS (p = 0.003). No other imaging or clinical parameters were predictive of PFS. CONCLUSIONS: This study highlights the potential of quantitative SSTR-PET/CT in predicting and monitoring everolimus response in NET patients. Liver metastasis-to-liver parenchyma ratios outperformed size-based criteria, and Tmean/Lmax ratio may serve as a prognostic marker for PFS, warranting larger cohort investigation.
Subject(s)
Everolimus , Liver Neoplasms , Neuroendocrine Tumors , Positron Emission Tomography Computed Tomography , Humans , Everolimus/therapeutic use , Everolimus/administration & dosage , Positron Emission Tomography Computed Tomography/methods , Male , Female , Middle Aged , Retrospective Studies , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/mortality , Liver Neoplasms/drug therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Aged , Adult , Organometallic Compounds/therapeutic use , Radiopharmaceuticals , Antineoplastic Agents/therapeutic use , Receptors, Somatostatin/metabolism , Octreotide/analogs & derivatives , Octreotide/therapeutic use , Progression-Free Survival , Treatment OutcomeABSTRACT
Background: A debate persists on the prognostic value of the pre-therapeutic standardized uptake value (SUV) of non-tumorous lung tissue for the risk assessment of therapy-related pneumonitis, with most studies lacking significant correlation. However, the influence of patient comorbidities on the pre-therapeutic lung SUV has not yet been systematically evaluated. Thus, we aimed to elucidate the association between comorbidities, biological variables and lung SUVs in pre-therapeutic [18F]FDG-PET/CT. Methods: In this retrospective study, the pre-therapeutic SUV in [18F]FDG-PET/CT was measured in non-tumorous areas of both lobes of the lung. SUVMEAN, SUVMAX and SUV95 were compared to a multitude of patient characteristics and comorbidities with Spearman's correlation analysis, followed by a Bonferroni correction and multilinear regression. Results: In total, 240 patients with lung cancer were analyzed. An elevated BMI was significantly associated with increased SUVMAX (ß = 0.037, p < 0.001), SUVMEAN (ß = 0.017, p < 0.001) and SUV95 (ß = 0.028, p < 0.001). Patients with chronic obstructive pulmonary disease (COPD) showed a significantly decreased SUVMAX (ß = -0.156, p = 0.001), SUVMEAN (ß = -0.107, p < 0.001) and SUV95 (ß = -0.134, p < 0.001). Multiple other comorbidities did not show a significant correlation with the SUV of the non-tumorous lung. Conclusions: Failure to consider the influence of BMI and COPD on the pre-therapeutic SUV measurements may lead to an erroneous interpretation of the pre-therapeutic SUV and subsequent treatment decisions in patients with lung cancer.
ABSTRACT
Radiopharmaceutical therapies (RPTs) with 177Lu-prostate-specific membrane antigen (PSMA) ligands have demonstrated promising results for the treatment of metastatic castration-resistant prostate cancer. The lack of absorbed-dose-effect relationships currently prevents patient-specific activity personalization. To ease the implementation of dosimetry in the routine clinical workflow for RPT, simplified methods such as single-time-point (STP) instead of multiple-time-point (MTP) imaging protocols are required. This work aimed at assessing differences in the time-integrated activity (TIA) of STP versus MTP image-based dosimetry for 177Lu-PSMA-617 therapy. Methods: Twenty metastatic castration-resistant prostate cancer patients with MTP quantitative 177Lu-SPECT imaging data (â¼24, 48, and 72 h post injection (p.i.)) available on first and second 177Lu-PSMA-617 therapy cycles were included in this study. Time-activity curves were fitted for kidneys and lesions to derive effective half-lives and yield a reference TIA. STP approaches involved the formula by Hänscheid (STPH) and a prior-information method (STPprior) that uses the effective half-lives from the first therapy cycle. All time points were considered for the STP approaches. Percentage differences (PDs) in TIA between STP and MTP were compared for the second therapy cycle. Results: Using STPH at 48 h p.i. for kidneys showed a -1.3% ± 5.6% PD from MTP, whereas STPprior showed a PD of 4.6% ± 6.2%. The smallest average PDs for the 56 investigated individual lesions were found using STPprior at 48 h p.i., at only 0.4% ± 14.9%, whereas STPH at 72 h p.i. had a smallest PD of -1.9% ± 14.8%. Conclusion: STP dosimetry for 177Lu-PSMA-617 therapy using a single SPECT/CT scan at 48 or 72 h p.i. is feasible, with a PD of less than ±20% compared with MTP. The validity of both STPH and STPprior has been demonstrated. We believe this finding can increase the adoption of dosimetry and facilitate implementation in routine clinical RPT workflows. Doing so will ultimately enable the finding of dose-effect relationships based on fixed therapy activities that may, in future, allow for absorbed-dose-based RPT activity personalization.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Dipeptides/therapeutic use , Prostate-Specific Antigen , Heterocyclic Compounds, 1-Ring/therapeutic use , Radiopharmaceuticals/therapeutic use , Lutetium/therapeutic useABSTRACT
Purpose: The aim of this study was to compare the diagnostic performance of different sets of MR sequences in detecting extrahepatic disease of NETs on routine liver magnetic resonance imaging (MRI). Method: One hundred twenty-seven patients with NETs with and without hepatic and extrahepatic metastases who underwent liver MRI and SSTR-PET/CT were retrospectively analyzed. Two radiologists evaluated in consensus in four sessions: (1) non-contrast T1w+T2w (NC), (2) NC+DWI, (3) NC+ contrast-enhanced T1w (CE), and (4) NC+DWI+CE the presence and number of metastases (lymph nodes, bone, peritoneal surface, lung base, and abdominal organ). Sensitivity, specificity, positive, and negative predictive value for detection of metastases were calculated for each session in a patient-based manner; detection and error rates were calculated for lesion-based analysis. Comparison between the MR-sessions and positron emission tomography-computed tomography (PET/CT) was performed with the McNemar test. Results: Regarding all 1,094 lesions detected in PET/CT, NC+DWI, and NC, CE+DWI identified most true-positive lesions 779 (71%) and 775 (71%), respectively. Patient-based analysis revealed significantly higher sensitivity by NC+DWI (85%) than NC and NC+CE (p = 0.011 and 0.004, respectively); the highest specificity was reached by NC+CE+DWI (100%). Site-based analysis revealed highest detection rates for lymph node metastases for NC+DWI and NC, CE+DWI (73 and 76%, respectively); error rates were lower for NC, CE+DWI with 5% compared with 17% (NC+DWI). Detection rates for bone metastases were similarly high in NC+DWI and NC, CE+DWI (75 and 74%, respectively), while CE showed no benefit. For peritoneal metastases highest sensitivity was reached by NC+DWI (67%). Conclusion: The combination of NC+DWI showed better sensitivities than the combination of NC+CE. NC+DWI showed similar, sometimes even better sensitivities than NC+CE+DWI, but with lower specificities.
ABSTRACT
BACKGROUND: Red blood cells (RBC) scintigraphy can be used not only for detection of bleeding sites, but also of spleen tissue. However, there is no established quantitative readout. Therefore, we investigated uptake in suspected splenic lesions in direct quantitative correlation to sites of physiologic uptake in order to objectify the readout. METHODS: 20 patients with Tc-99m-labelled RBC scintigraphy and SPECT/low-dose CT for assessment of suspected splenic tissue were included. Lesions were rated as vital splenic or non-splenic tissue, and uptake and physiologic uptake of bone marrow, pancreas, and spleen were then quantified using a volume-of-interest based approach. Hepatic uptake served as a reference. RESULTS: The median uptake ratio was significantly higher in splenic (2.82 (range, 0.58-24.10), n = 47) compared to other lesions (0.49 (0.01-0.83), n = 7), p < 0.001, and 5 lesions were newly discovered. The median pancreatic uptake was 0.09 (range 0.03-0.67), bone marrow 0.17 (0.03-0.45), and orthotopic spleen 14.45 (3.04-29.82). Compared to orthotopic spleens, the pancreas showed lowest uptake (0.09 vs. 14.45, p = 0.004). Based on pancreatic uptake we defined a cutoff (0.75) to distinguish splenic from other tissues. CONCLUSION: As the uptake in extra-splenic regions is invariably low compared to splenules, it can be used as comparator for evaluating suspected splenic tissues.
ABSTRACT
BACKGROUND: Dosimetry can tailor prostate-specific membrane-antigen-targeted radioligand therapy (PSMA-RLT) for metastatic castration-resistant prostate cancer (mCRPC). However, whole-body tumor dosimetry is challenging in patients with a high tumor burden. We evaluate a simplified index-lesion-based single-photon emission computed tomography (SPECT) dosimetry method in correlation with clinical outcome. METHODS: 30 mCRPC patients were included (median 71 years). The dosimetry was performed for the first cycle using quantitative 177Lu-SPECT. The response was evaluated using RECIST 1.1 and PERCIST criteria, as well as changes in PSMA-positive tumor volume (PSMA-TV) in post-therapy PSMA-PET and biochemical response according to PSA changes after two RLT cycles. RESULTS: Mean tumor doses as well as index-lesion doses were significantly higher in PERCIST responders compared to non-responders (10.2 ± 12.0 Gy/GBq vs. 4.0 ± 2.9 Gy/GBq, p = 0.03 and 13.7 ± 14.2 Gy/GBq vs. 5.9 ± 4.4 Gy/GBq, p = 0.04, respectively). No significant differences in mean tumor and index lesion doses were observed between responders and non-responders according to RECIST 1.1, PSMA-TV, and biochemical response criteria. CONCLUSION: Compared to mean tumor doses on a patient level, single index-lesion-based SPECT dosimetry correlates equally well with the response to PSMA-RLT according to PERCIST criteria and may represent a fast and feasible dosimetry approach for clinical routine.