Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nucleic Acids Res ; 48(13): 7520-7531, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32678884

ABSTRACT

2'-5'-Oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) and play a critical role in limiting viral infection. dsRNA binding induces allosteric structural changes in OAS1 that reorganize its catalytic center to promote synthesis of 2'-5'-oligoadenylate and thus activation of endoribonuclease L. Specific RNA sequences and structural motifs can also enhance activation of OAS1 through currently undefined mechanisms. To better understand these drivers of OAS activation, we tested the impact of defined sequence changes within a short dsRNA that strongly activates OAS1. Both in vitro and in human A549 cells, appending a 3'-end single-stranded pyrimidine (3'-ssPy) can strongly enhance OAS1 activation or have no effect depending on its location, suggesting that other dsRNA features are necessary for correct presentation of the motif to OAS1. Consistent with this idea, we also find that the dsRNA binding position is dictated by an established consensus sequence (WWN9WG). Unexpectedly, however, not all sequences fitting this consensus activate OAS1 equivalently, with strong dependence on the identity of both partially conserved (W) and non-conserved (N9) residues. A picture thus emerges in which both specific RNA features and the context in which they are presented dictate the ability of short dsRNAs to activate OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Consensus Sequence , RNA/chemistry , 2',5'-Oligoadenylate Synthetase/chemistry , A549 Cells , Allosteric Regulation , Allosteric Site , Catalytic Domain , Humans , Molecular Docking Simulation , Protein Binding , RNA/metabolism
2.
Nucleic Acids Res ; 43(1): 544-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25477390

ABSTRACT

Human 2'-5' oligoadenylate synthetase-1 (OAS1) is central in innate immune system detection of cytoplasmic double-stranded RNA (dsRNA) and promotion of host antiviral responses. However, the molecular signatures that promote OAS1 activation are currently poorly defined. We show that the 3'-end polyuridine sequence of viral and cellular RNA polymerase III non-coding transcripts is critical for their optimal activation of OAS1. Potentiation of OAS1 activity was also observed with a model dsRNA duplex containing an OAS1 activation consensus sequence. We determined that the effect is attributable to a single appended 3'-end residue, is dependent upon its single-stranded nature with strong preference for pyrimidine residues and is mediated by a highly conserved OAS1 residue adjacent to the dsRNA binding surface. These findings represent discovery of a novel signature for OAS1 activation, the 3'-single-stranded pyrimidine (3'-ssPy) motif, with potential functional implications for OAS1 activity in its antiviral and other anti-proliferative roles.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , RNA, Viral/chemistry , 2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/genetics , Enzyme Activation , Humans , Mutagenesis , Nucleotide Motifs , Pyrimidines/analysis , RNA, Double-Stranded/metabolism , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , RNA, Viral/metabolism
3.
J Biol Chem ; 289(33): 23233-23245, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24970889

ABSTRACT

Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg(2+)-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5' half of the central domain. Deletion of the central domain 3' half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5' half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously.


Subject(s)
Adenoviridae/chemistry , Nucleic Acid Conformation , RNA, Viral/chemistry , eIF-2 Kinase/antagonists & inhibitors , Adenoviridae/genetics , Adenoviridae/metabolism , Hydrogen-Ion Concentration , Magnesium/chemistry , Mutagenesis , RNA, Viral/genetics , RNA, Viral/metabolism , eIF-2 Kinase/chemistry , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
4.
Virus Res ; 212: 39-52, 2016 Jan 02.
Article in English | MEDLINE | ID: mdl-26116898

ABSTRACT

Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/metabolism , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Adenoviridae/genetics , Adenoviridae Infections/genetics , Adenoviridae Infections/metabolism , Animals , Humans , RNA, Untranslated/genetics , RNA, Viral/genetics
5.
Methods Mol Biol ; 941: 157-69, 2012.
Article in English | MEDLINE | ID: mdl-23065560

ABSTRACT

Chemical and enzymatic RNA structure probing methods are important tools for examining RNA secondary and tertiary structures and their interactions with proteins, small molecules, and ions. The recently developed "Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension" (SHAPE) approach has proven especially useful for uncovering details of secondary structures, complex tertiary interactions, and RNA dynamics. Analysis of short RNAs using SHAPE or other probing methods that require reverse transcription to detect RNA modifications presents a technical hurdle in that intense bands corresponding to abortive transcription during primer extension and the full-length RT product may obscure information corresponding to the 3' and 5' ends of the molecule, respectively. This chapter describes the design and use of an RNA "structure cassette" that addresses these issues. First, we describe methods by which any RNA of interest may be cloned into a new plasmid preloaded with sequences that encode a structure cassette surrounding the short internal target RNA. Next, we outline key considerations and analyses of the RNAs produced that should be performed prior to SHAPE or other structure probing experiments.


Subject(s)
Plasmids/genetics , RNA/biosynthesis , RNA/chemistry , Transcription, Genetic , Cloning, Molecular , Genetic Techniques , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL