Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(15): e2109617119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35353605

ABSTRACT

α-Synuclein (α-syn) phosphorylation at serine 129 (pS129­α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129­α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129­α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129­α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129­α-syn (WT­α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129­α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129­α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129­α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129­α-syn as a measure of efficacy in clinical trials.


Subject(s)
Amyloid , Lewy Body Disease , Parkinson Disease , Protein Aggregation, Pathological , alpha-Synuclein , Amyloid/metabolism , Humans , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Serine/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
2.
Neurobiol Dis ; 182: 106147, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37178811

ABSTRACT

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , SARS-CoV-2 , Nervous System Diseases/etiology , Central Nervous System , Brain
3.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37511086

ABSTRACT

AD is the most common neurodegenerative disorder characterized by progressive memory impairment and cognitive deficits. The pathology of AD is still unclear; however, several studies have shown that the aggregation of the Aß peptide in the CNS is an exclusively pathological process involved in AD. Currently, there is no proven medication to cure or prevent the disease progression. Nevertheless, various therapeutic approaches for AD show only relief of symptoms and mostly work on cognitive recovery. However, one of the promising approaches for therapeutic intervention is to use inhibitors for blocking the Aß peptide aggregation process. Recently, herbal phenolic compounds have been shown to have a therapeutic property for treatment of AD due to their multifaceted action. In this study, we investigated the effectiveness of SA, Gn Rb1, and DMyr on inhibiting the aggregation and toxicity of Aß40 and Aß42 using different biochemical and cell-based assays. Our results showed that SA and DMyr inhibit Aß40 and Aß42 fibrillation, seeded aggregation, and toxicity. Gn Rb1 did not have any effect on the aggregation or toxicity induced by Aß40 and Aß42. Moreover, SA and DMyr were able to disaggregate the preformed fibrils. Overall, these compounds may be used alone or synergistically and could be considered as a lead for designing new compounds that could be used as effective treatment of AD and related disorders.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Peptide Fragments , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/drug therapy , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism
4.
Brain ; 143(5): 1462-1475, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32380543

ABSTRACT

In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.


Subject(s)
Brain/pathology , Neuroimmunomodulation/physiology , Parkinson Disease/physiopathology , Vagus Nerve/pathology , alpha-Synuclein/toxicity , Aged , Animals , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Female , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Male , Papio , alpha-Synuclein/administration & dosage
5.
Molecules ; 26(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205249

ABSTRACT

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Subject(s)
Alkaloids/pharmacology , Biological Products/pharmacology , alpha-Synuclein/antagonists & inhibitors , Amyloid/metabolism , Cell Line , Cell Survival/drug effects , Humans , Lewy Bodies/drug effects , Lewy Bodies/metabolism , Medicine, Chinese Traditional/methods , Parkinson Disease/drug therapy , Parkinson Disease/metabolism
8.
J Neurochem ; 150(5): 612-625, 2019 09.
Article in English | MEDLINE | ID: mdl-31055836

ABSTRACT

Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".


Subject(s)
Antibodies/immunology , Synucleinopathies/therapy , alpha-Synuclein/immunology , Antibodies/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibody Specificity , Biomarkers , Delayed Diagnosis , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Immunologic Tests/methods , Parkinson Disease/diagnosis , Parkinson Disease/immunology , Parkinson Disease/therapy , Protein Aggregation, Pathological/immunology , Protein Aggregation, Pathological/prevention & control , Protein Conformation , Protein Engineering , Recombinant Proteins/immunology , Single-Domain Antibodies/immunology , Synucleinopathies/diagnosis , Synucleinopathies/immunology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/chemistry
9.
J Neuroinflammation ; 15(1): 129, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29716614

ABSTRACT

BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.


Subject(s)
Lewy Bodies/pathology , Microglia/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/pathology , Substantia Nigra/pathology , alpha-Synuclein/toxicity , Animals , Injections, Intraventricular , Lewy Bodies/drug effects , Lewy Bodies/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Nerve Degeneration/metabolism , Rats , Rats, Inbred F344 , Substantia Nigra/drug effects , Substantia Nigra/metabolism , alpha-Synuclein/administration & dosage
10.
J Neuroinflammation ; 15(1): 169, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29843738

ABSTRACT

After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher.

11.
Mov Disord ; 33(11): 1724-1733, 2018 11.
Article in English | MEDLINE | ID: mdl-30440090

ABSTRACT

BACKGROUND: The objective of this study was to investigate the discriminating value of a range of CSF α-synuclein species for dementia with Lewy bodies compared with Alzheimer's disease, PD, and cognitively normal controls. METHODS: We applied our recently published enzyme-linked immunosorbent assays to measure the CSF levels of total α-synuclein, oligomeric α-synuclein, and phosphorylated α-synuclein in dementia with Lewy bodies (n = 42), Alzheimer's disease (n = 39), PD (n = 46), and controls (n = 78). General linear models corrected for age and sex were performed to assess differences in α-synuclein levels between groups. We used backward-elimination logistic regression analysis to investigate the combined discriminating value of the different CSF α-synuclein species and Alzheimer's disease biomarkers. RESULTS: CSF levels of total α-synuclein were lower in dementia with Lewy bodies and PD compared with Alzheimer's disease as well as controls (P < 0.001). In contrast, CSF levels of oligomeric α-synuclein were higher in dementia with Lewy bodies and PD compared with Alzheimer's disease (P < 0.05) and controls (P < 0.001). No group differences were found for phosphorylated α-synuclein. In dementia with Lewy bodies and PD, CSF total α-synuclein levels positively correlated with tau and phosphorylated tau (both r > 0.40, P < 0.01), but not with amyloid-ß1-42 . The optimal combination to differentiate dementia with Lewy bodies from controls consisted of amyloid-ß1-42 , tau, total α-synuclein, oligomeric α-synuclein, age, and sex (AUC, 0.90). To differentiate dementia with Lewy bodies from Alzheimer's disease, the combination of tau and oligomeric α-synuclein resulted in an AUC of 0.83. CSF α-synuclein species do not contribute to the differentiation of dementia with Lewy bodies from PD. CONCLUSIONS: CSF α-synuclein species could be useful as part of a biomarker panel for dementia with Lewy bodies. Evaluating both oligomeric α-synuclein and total α-synuclein in CSF helps in the diagnosis of dementia with Lewy bodies. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Biomarkers/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Electroencephalography , Female , Humans , Lewy Body Disease/diagnostic imaging , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnostic imaging , Peptide Fragments/cerebrospinal fluid , Psychiatric Status Rating Scales , Retrospective Studies , Tomography, Emission-Computed, Single-Photon , Tropanes/pharmacokinetics , tau Proteins/cerebrospinal fluid
12.
Mol Ther ; 24(4): 746-58, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26700614

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and postural instability, for which there is no effective treatment available till date. Here, we report the development of nonviral vectors specific for neuronal cells that can deliver short interfering RNA (siRNA) against the α-synuclein gene (SNCA), and prevent PD-like symptoms both in vitro and in vivo. These vectors not only help siRNA duplexes cross the blood-brain barrier in mice, but also stabilize these siRNAs leading to a sustainable 60-90% knockdown of α-synuclein protein. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rapidly develop PD-like symptoms which were significantly alleviated when SNCA was knocked down using our vectors. Together, our data not only confirm the central role of α-synuclein in the onset of PD, but also provide a proof of principle that these nonviral vectors can be used as novel tools to design effective strategies to combat central nervous system diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Parkinson Disease/therapy , RNA, Small Interfering/administration & dosage , alpha-Synuclein/antagonists & inhibitors , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Cell Line , Disease Models, Animal , Gene Expression Regulation , Genetic Vectors/administration & dosage , Humans , Mice , Parkinson Disease/etiology , Parkinson Disease/genetics , Peptide Library , alpha-Synuclein/metabolism
13.
Mov Disord ; 31(10): 1535-1542, 2016 10.
Article in English | MEDLINE | ID: mdl-27548849

ABSTRACT

BACKGROUND: Parkinson's disease (PD) diagnosis is mainly based on clinical criteria, with a high risk of misdiagnosis. The identification of reliable biomarkers for disease diagnosis and progression has a key role for developing disease-modifying therapies. In this article, we investigated the longitudinal changes of CSF α-synuclein species in early PD patients and explored the potential use of these species as surrogate biomarkers for PD progression. METHODS: We used our newly developed enzyme-linked immunosorbent assay systems for measuring different forms of α-synuclein, such as oligomeric-α-synuclein, phosphorylated-α-synuclein at serine 129, or total-α-synuclein in CSF from the longitudinal Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study cohort (n = 121). CSF Alzheimer's disease biomarkers (total-tau, phosphorylated-tau, Aß40 , and Aß42 ) were also measured for this cohort. RESULTS: Interestingly, total-α-synuclein and oligomeric-α-synuclein levels significantly increased during the 2-year Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study follow-up period, whereas phosphorylated-α-synuclein at serine 129 levels showed a longitudinal decrease. We have also noted an association between a change of the oligomeric-α-synuclein/total-α-synuclein ratio and a worsening of motor signs, in particular in the postural-instability and gait-difficulty dominant PD group. A strong positive correlation between the changes in CSF total-α-synuclein and oligomeric-α-synuclein during the 2-year Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism study was also noted (r = 0.84, P < .001). CONCLUSION: Our data show that CSF α-synuclein species have a dynamic pattern along the course of the disease, supporting their possible role as progression biomarkers for PD and their link with PD clinical phenotypes. © 2016 International Parkinson and Movement Disorder Society.


Subject(s)
Disease Progression , Parkinson Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Aged , Antioxidants/therapeutic use , Biomarkers/cerebrospinal fluid , Female , Humans , Longitudinal Studies , Male , Middle Aged , Parkinson Disease/drug therapy
14.
Neurobiol Dis ; 79: 81-99, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25937088

ABSTRACT

α-Synuclein (α-syn), a small protein that has the intrinsic propensity to aggregate, is implicated in several neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are collectively known as synucleinopathies. Genetic, pathological, biochemical, and animal modeling studies provided compelling evidence that α-syn aggregation plays a key role in the pathogenesis of PD and related synucleinopathies. It is therefore of utmost importance to develop reliable tools that can detect the aggregated forms of α-syn. We describe here the generation and characterization of six novel conformation-specific monoclonal antibodies that recognize specifically α-syn aggregates but not the soluble, monomeric form of the protein. The antibodies described herein did not recognize monomers or fibrils generated from other amyloidogenic proteins including ß-syn, γ-syn, ß-amyloid, tau protein, islet amyloid polypeptide and ABri. Interestingly, the antibodies did not react to overlapping linear peptides spanning the entire sequence of α-syn, confirming further that they only detect α-syn aggregates. In immunohistochemical studies, the new conformation-specific monoclonal antibodies showed underappreciated small micro-aggregates and very thin neurites in PD and DLB cases that were not observed with generic pan antibodies that recognize linear epitope. Furthermore, employing one of our conformation-specific antibodies in a sandwich based ELISA, we observed an increase in levels of α-syn oligomers in brain lysates from DLB compared to Alzheimer's disease and control samples. Therefore, the conformation-specific antibodies portrayed herein represent useful tools for research, biomarkers development, diagnosis and even immunotherapy for PD and related pathologies.


Subject(s)
Antibodies, Monoclonal/immunology , Brain/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/immunology , Adaptor Proteins, Signal Transducing , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Brain/pathology , Escherichia coli , Islet Amyloid Polypeptide/metabolism , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Membrane Glycoproteins/metabolism , Mice , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Peptide Fragments/metabolism , Protein Conformation , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/immunology , beta-Synuclein/metabolism , gamma-Synuclein/immunology , gamma-Synuclein/metabolism , tau Proteins/metabolism
15.
Protein Sci ; 33(2): e4875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38105512

ABSTRACT

Nanobodies are single-domain fragments of antibodies with comparable specificity and affinity to antibodies. They are emerging as versatile tools in biology due to their relatively small size. Here, we report the crystal structure of a specific nanobody Nbα-syn01, bound to a 14 amino acid long peptide of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. The complex structure exhibits a unique binding pattern where the αSyn peptide replaces the N-terminal region of nanobody. Recognition is mediated principally by extended main chain interaction of the αSyn peptide and specificity of the interaction lies in the central 48-52 region of αSyn peptide. Structure-guided truncation of Nbα-syn01 shows tighter binding to αSyn peptide and improved inhibition of α-synuclein aggregation. The structure of the truncated complex was subsequently determined and was indistinguishable to full length complex as the full-length form had no visible electron density for the N-terminal end. These findings reveal the molecular basis for a previously unobserved binding mode for nanobody recognition of α-synuclein, providing an explanation for the enhanced binding, and potential for an alternate framework for structure-based protein engineering of nanobodies to develop better diagnostic and therapeutic tools.


Subject(s)
Parkinson Disease , Single-Domain Antibodies , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Peptides , Antibodies
16.
Methods Mol Biol ; 2617: 239-248, 2023.
Article in English | MEDLINE | ID: mdl-36656529

ABSTRACT

Recombinant antibody fragments such as Fab, scFvs, and diabodies against α-syn have become a viable alternative to the conventional full-length antibodies in immunotherapeutic approaches due to their benefits which include smaller size, higher stability, specificity, and affinity. However, the majority of recombinant antibody fragments typically express as inclusion bodies (IBs) in E. coli, which makes their purification incredibly difficult. Here, we describe a method involving a mild solubilizing protocol followed by slow on-column refolding to purify active single-chain variable fragment (scFv-pF) antibody that can recognize the pathogenic α-syn fibrils.


Subject(s)
Single-Chain Antibodies , alpha-Synuclein , Escherichia coli/genetics , Single-Chain Antibodies/genetics , Recombinant Proteins , Inclusion Bodies
17.
Front Physiol ; 14: 1203723, 2023.
Article in English | MEDLINE | ID: mdl-37520825

ABSTRACT

Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.

18.
ACS Chem Neurosci ; 13(23): 3330-3341, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36348612

ABSTRACT

Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.


Subject(s)
Aptamers, Nucleotide , alpha-Synuclein , Humans , alpha-Synuclein/genetics , DNA, Single-Stranded , Lewy Bodies , Lewy Body Disease/genetics , Parkinson Disease/genetics , Aptamers, Nucleotide/genetics
19.
FEBS J ; 289(15): 4657-4673, 2022 08.
Article in English | MEDLINE | ID: mdl-35090199

ABSTRACT

Nanobodies (Nbs), the single-domain antigen-binding fragments of dromedary heavy-chain antibodies (HCAb), are excellent candidates as therapeutic and diagnostic tools in synucleinopathies because of their small size, solubility and stability. Here, we constructed an immune nanobody library specific to the monomeric form of alpha-synuclein (α-syn). Phage display screening of the library allowed the identification of a nanobody, Nbα-syn01, specific for α-syn. Unlike previously developed nanobodies, Nbα-syn01 recognized the N-terminal region which is critical for in vitro and in vivo aggregation and contains many point mutations involved in early PD cases. The affinity of the monovalent Nbα-syn01 and the engineered bivalent format BivNbα-syn01 measured by isothermal titration calorimetry revealed unexpected results where Nbα-syn01 and its bivalent format recognized preferentially α-syn fibrils compared to the monomeric form. Nbα-syn01 and BivNbα-syn01 were also able to inhibit α-syn-seeded aggregation in vitro and reduced α-syn-seeded aggregation and toxicity in cells showing their potential to reduce α-syn pathology. Moreover, both nanobody formats were able to recognize Lewy-body pathology in human post-mortem brain tissue from PD and DLB cases. Additionally, we present evidence through structural docking that Nbα-syn01 binds the N-terminal region of the α-syn aggregated form. Overall, these results highlight the potential of Nbα-syn01 and BivNbα-syn01 in developing into a diagnostic or a therapeutic tool for PD and related disorders.


Subject(s)
Parkinson Disease , Single-Domain Antibodies , Brain/metabolism , Humans , Parkinson Disease/drug therapy , Single-Domain Antibodies/metabolism , alpha-Synuclein/chemistry
20.
Biomolecules ; 11(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34072869

ABSTRACT

Aggregated α-synuclein (αSyn) protein is a core pathological feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Both PD and DLB demonstrate the presence of diverse intracellular α-synuclein (αSyn) species, including C-terminally truncated αSyn (C-αSyn), although it is unknown how C-αSyn species contribute to disease progression. Using recombinant C-αSyn and PD and DLB brain lysates as seeds in the real-time quaking-induced conversion (RT-QuIC) assay, we explored how C-αSyn may be involved in disease stratification. Comparing the seeding activity of aqueous-soluble fractions to detergent-soluble fractions, and using αSyn 1-130 as substrate for the RT-QuIC assay, the temporal cortex seeds differentiated PD and DLB from healthy controls. In contrast to the temporal cortex, where PD and DLB could not be distinguished, αSyn 1-130 seeded by the detergent-soluble fractions from the PD frontal cortex demonstrated greater seeding efficiency compared to the DLB frontal cortex. Moreover, proteinase K-resistant (PKres) fragments from the RT-QuIC end products using C-αSyn 1-130 or C-αSyn 1-115 were more obvious in the frontal cortex compared to the temporal cortex. Morphological examinations of RT-QuIC end products showed differences in the size of the fibrils between C-αSyn 1-130 and C-αSyn 1-115, in agreement with the RT-QuIC results. These data show that C-αSyn species can distinguish PD from DLB and suggest diversity in αSyn species across these synucleinopathies, which could play a role in disease progression.


Subject(s)
Brain/metabolism , Lewy Body Disease/metabolism , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL