Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
Add more filters

Publication year range
1.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: mdl-34758478

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
2.
BMC Med ; 22(1): 321, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113058

ABSTRACT

BACKGROUND: Vitamin A is essential for physiological processes like vision and immunity. Vitamin A's effect on gut microbiome composition, which affects absorption and metabolism of other vitamins, is still unknown. Here we examined the relationship between gut metagenome composition and six vitamin A-related metabolites (two retinoid: -retinol, 4 oxoretinoic acid (oxoRA) and four carotenoid metabolites, including beta-cryptoxanthin and three carotene diols). METHODS: We included 1053 individuals from the TwinsUK cohort with vitamin A-related metabolites measured in serum and faeces, diet history, and gut microbiome composition assessed by shotgun metagenome sequencing. Results were replicated in 327 women from the ZOE PREDICT-1 study. RESULTS: Five vitamin A-related serum metabolites were positively correlated with microbiome alpha diversity (r = 0.15 to r = 0.20, p < 4 × 10-6). Carotenoid compounds were positively correlated with the short-chain fatty-acid-producing bacteria Faecalibacterium prausnitzii and Coprococcus eutactus. Retinol was not associated with any microbial species. We found that gut microbiome composition could predict circulating levels of carotenoids and oxoretinoic acid with AUCs ranging from 0.66 to 0.74 using random forest models, but not retinol (AUC = 0.52). The healthy eating index (HEI) was strongly associated with gut microbiome diversity and with all carotenoid compounds, but not retinoids. We investigated the mediating role of carotenoid compounds on the effect of a healthy diet (HEI) on gut microbiome diversity, finding that carotenoids significantly mediated between 18 and 25% of the effect of HEI on gut microbiome alpha diversity. CONCLUSIONS: Our results show strong links between circulating carotene compounds and gut microbiome composition and potential links to a healthy diet pattern.


Subject(s)
Carotenoids , Gastrointestinal Microbiome , Retinoids , Vitamin A , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Vitamin A/blood , Carotenoids/blood , Carotenoids/metabolism , Female , Middle Aged , Male , Retinoids/metabolism , Aged , Diet , Feces/microbiology , Adult
3.
Osteoarthritis Cartilage ; 32(8): 990-1000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38648876

ABSTRACT

OBJECTIVE: To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD: Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS: Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (ß(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (ß(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (ß(95%CI) = 4.090 (1.92-6.26)) and anandamide (ß(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (ß(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (ß(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (ß(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (ß(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (ß(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (ß(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (ß(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (ß(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS: Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.


Subject(s)
Arthralgia , Disease Progression , Osteoarthritis, Knee , Humans , Female , Male , Osteoarthritis, Knee/blood , Middle Aged , Cross-Sectional Studies , Aged , Arthralgia/blood , Longitudinal Studies , Cohort Studies , Oxylipins/blood , Knee Joint , Hydroxyeicosatetraenoic Acids/blood , Arachidonic Acids/blood , Biomarkers/blood , Pain Measurement , Arachidonic Acid/blood
4.
Article in English | MEDLINE | ID: mdl-39103080

ABSTRACT

OBJECTIVE: The ArmeD SerVices TrAuma RehabilitatioN OutComE (ADVANCE) study is investigating long-term combat-injury outcomes; this sub-study aims to understand the association of osteoarthritis (OA) biomarkers with knee radiographic OA (rOA), pain and function in this high-risk population for post-traumatic OA. DESIGN: ADVANCE compares combat-injured participants with age, rank, deployment and job-role frequency-matched uninjured participants. Post-injury immunoassay-measured serum biomarkers, knee radiographs, Knee Injury and Osteoarthritis Outcome Scale, and six-minute walk tests are reported. The primary analysis, adjusted for age, body mass, socioeconomic status, and ethnicity, was to determine any differences in biomarkers between those with/without combat injury, rOA and pain. Secondary analyses were performed to compare post-traumatic/idiopathic OA, painful/painfree rOA and injury patterns. RESULTS: A total of 1145 male participants were recruited, aged 34.1 ± 5.4, 8.9 ± 2.2 years post-injury (n = 579 trauma-exposed, of which, traumatic-amputation n = 161) or deployment (n = 566 matched). Cartilage oligomeric matrix protein (COMP) was significantly higher in the combat-injured group compared to uninjured (p = 0.01). Notably, COMP was significantly lower in the traumatic-amputation group compared to non-amputees (p < 0.001), decreasing relative to number of amputations (p < 0.001). Leptin was higher (p = 0.005) and adiponectin lower (p = 0.017) in those with v without knee pain, associated with an increased risk of 22% and 17% for pain, and 46% and 34% for painful rOA, respectively. There were no significant differences between trauma-exposed and unexposed participants with rOA. CONCLUSIONS: The most notable findings of this large, unique study are the similarities between those with rOA regardless of trauma-exposure, the injury-pattern and traumatic-amputation-associated differences in COMP, and the relationship between adipokines and pain.

5.
Eur J Nutr ; 63(1): 121-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709944

ABSTRACT

BACKGROUND: Snacking is a common diet behaviour which accounts for a large proportion of daily energy intake, making it a key determinant of diet quality. However, the relationship between snacking frequency, quality and timing with cardiometabolic health remains unclear. DESIGN: Demography, diet, health (fasting and postprandial cardiometabolic blood and anthropometrics markers) and stool metagenomics data were assessed in the UK PREDICT 1 cohort (N = 1002) (NCT03479866). Snacks (foods or drinks consumed between main meals) were self-reported (weighed records) across 2-4 days. Average snacking frequency and quality [snack diet index (SDI)] were determined (N = 854 after exclusions). Associations between snacking frequency, quality and timing with cardiometabolic blood and anthropometric markers were assessed using regression models (adjusted for age, sex, BMI, education, physical activity level and main meal quality). RESULTS: Participants were aged (mean, SD) 46.1 ± 11.9 years, had a mean BMI of 25.6 ± 4.88 kg/m2 and were predominantly female (73%). 95% of participants were snackers (≥ 1 snack/day; n = 813); mean daily snack intake was 2.28 snacks/day (24 ± 16% of daily calories; 203 ± 170 kcal); and 44% of participants were discordant for meal and snack quality. In snackers, overall snacking frequency and quantity of snack energy were not associated with cardiometabolic risk markers. However, lower snack quality (SDI range 1-11) was associated with higher blood markers, including elevated fasting triglycerides (TG (mmol/L) ß; - 0.02, P = 0.02), postprandial TGs (6hiAUC (mmol/L.s); ß; - 400, P = 0.01), fasting insulin (mIU/L) (ß; - 0.15, P = 0.04), insulin resistance (HOMA-IR; ß; - 0.04, P = 0.04) and hunger (scale 0-100) (ß; - 0.52, P = 0.02) (P values non-significant after multiple testing adjustments). Late-evening snacking (≥ 9 pm; 31%) was associated with lower blood markers (HbA1c; 5.54 ± 0.42% vs 5.46 ± 0.28%, glucose 2hiAUC; 8212 ± 5559 vs 7321 ± 4928 mmol/L.s, P = 0.01 and TG 6hiAUC; 11,638 ± 8166 vs 9781 ± 6997 mmol/L.s, P = 0.01) compared to all other snacking times (HbA1c remained significant after multiple testing). CONCLUSION: Snack quality and timing of consumption are simple diet features which may be targeted to improve diet quality, with potential health benefits. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE: NCT03479866, https://clinicaltrials.gov/ct2/show/NCT03479866?term=NCT03479866&draw=2&rank=1.


Subject(s)
Cardiovascular Diseases , Snacks , Female , Humans , Male , Diet , Energy Intake , Feeding Behavior , Glycated Hemoglobin , Adult , Middle Aged
6.
Eur J Neurosci ; 57(2): 373-387, 2023 01.
Article in English | MEDLINE | ID: mdl-36453757

ABSTRACT

The reciprocal interaction between pain and negative affect is acknowledged but pain-related alterations in brain circuits involved in this interaction, such as the mediodorsal thalamus (MDThal), still require a better understanding. We sought to investigate the relationship between MDThal circuitry, negative affect and pain severity in chronic musculoskeletal pain. For these analyses, participants with chronic knee pain (CKP, n = 74) and without (n = 36) completed magnetic resonance imaging scans and questionnaires. Seed-based MDThal functional connectivity (FC) was compared between groups. Within CKP group, we assessed the interdependence of MDThal FC with negative affect. Finally, post hoc moderation analysis explored whether burden of pain influences affect-related MDThal FC. The CKP group showed altered MDThal FC to hippocampus, ventromedial prefrontal cortex and subgenual anterior cingulate. Furthermore, in CKP group, MDThal connectivity correlated significantly with negative affect in several brain regions, most notably the medial prefrontal cortex, and this association was stronger with increasing pain burden and absent in pain-free controls. In conclusion, we demonstrate mediodorsal thalamo-cortical dysconnectivity in chronic pain with areas linked to mood disorders and associations of MDThal FC with negative affect. Moreover, burden of pain seems to enhance affect sensitivity of MDThal FC. These findings suggest mediodorsal thalamic network changes as possible drivers of the detrimental interplay between chronic pain and negative affect.


Subject(s)
Chronic Pain , Humans , Gyrus Cinguli , Thalamus , Comorbidity , Affect , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Brain Mapping
7.
Lancet ; 399(10335): 1618-1624, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35397851

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant of concern, omicron, appears to be less severe than delta. We aim to quantify the differences in symptom prevalence, risk of hospital admission, and symptom duration among the vaccinated population. METHODS: In this prospective longitudinal observational study, we collected data from participants who were self-reporting test results and symptoms in the ZOE COVID app (previously known as the COVID Symptoms Study App). Eligible participants were aged 16-99 years, based in the UK, with a body-mass index between 15 and 55 kg/m2, had received at least two doses of any SARS-CoV-2 vaccine, were symptomatic, and logged a positive symptomatic PCR or lateral flow result for SARS-CoV-2 during the study period. The primary outcome was the likelihood of developing a given symptom (of the 32 monitored in the app) or hospital admission within 7 days before or after the positive test in participants infected during omicron prevalence compared with those infected during delta prevalence. FINDINGS: Between June 1, 2021, and Jan 17, 2022, we identified 63 002 participants who tested positive for SARS-CoV-2 and reported symptoms in the ZOE app. These patients were matched 1:1 for age, sex, and vaccination dose, across two periods (June 1 to Nov 27, 2021, delta prevalent at >70%; n=4990, and Dec 20, 2021, to Jan 17, 2022, omicron prevalent at >70%; n=4990). Loss of smell was less common in participants infected during omicron prevalence than during delta prevalence (16·7% vs 52·7%, odds ratio [OR] 0·17; 95% CI 0·16-0·19, p<0·001). Sore throat was more common during omicron prevalence than during delta prevalence (70·5% vs 60·8%, 1·55; 1·43-1·69, p<0·001). There was a lower rate of hospital admission during omicron prevalence than during delta prevalence (1·9% vs 2·6%, OR 0·75; 95% CI 0·57-0·98, p=0·03). INTERPRETATION: The prevalence of symptoms that characterise an omicron infection differs from those of the delta SARS-CoV-2 variant, apparently with less involvement of the lower respiratory tract and reduced probability of hospital admission. Our data indicate a shorter period of illness and potentially of infectiousness which should impact work-health policies and public health advice. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, and Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Hospitals , Humans , Prevalence , Prospective Studies , SARS-CoV-2/genetics
8.
BMC Med ; 21(1): 231, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400796

ABSTRACT

BACKGROUND: A dysregulated postprandial metabolic response is a risk factor for chronic diseases, including type 2 diabetes mellitus (T2DM). The plasma protein N-glycome is implicated in both lipid metabolism and T2DM risk. Hence, we first investigate the relationship between the N-glycome and postprandial metabolism and then explore the mediatory role of the plasma N-glycome in the relationship between postprandial lipaemia and T2DM. METHODS: We included 995 individuals from the ZOE-PREDICT 1 study with plasma N-glycans measured by ultra-performance liquid chromatography at fasting and triglyceride, insulin, and glucose levels measured at fasting and following a mixed-meal challenge. Linear mixed models were used to investigate the associations between plasma protein N-glycosylation and metabolic response (fasting, postprandial (Cmax), or change from fasting). A mediation analysis was used to further explore the relationship of the N-glycome in the prediabetes (HbA1c = 39-47 mmol/mol (5.7-6.5%))-postprandial lipaemia association. RESULTS: We identified 36 out of 55 glycans significantly associated with postprandial triglycerides (Cmax ß ranging from -0.28 for low-branched glycans to 0.30 for GP26) after adjusting for covariates and multiple testing (padjusted < 0.05). N-glycome composition explained 12.6% of the variance in postprandial triglycerides not already explained by traditional risk factors. Twenty-seven glycans were also associated with postprandial glucose and 12 with postprandial insulin. Additionally, 3 of the postprandial triglyceride-associated glycans (GP9, GP11, and GP32) also correlate with prediabetes and partially mediate the relationship between prediabetes and postprandial triglycerides. CONCLUSIONS: This study provides a comprehensive overview of the interconnections between plasma protein N-glycosylation and postprandial responses, demonstrating the incremental predictive benefit of N-glycans. We also suggest a considerable proportion of the effect of prediabetes on postprandial triglycerides is mediated by some plasma N-glycans.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperlipidemias , Prediabetic State , Humans , Blood Glucose/metabolism , Triglycerides , Insulin , Polysaccharides , Blood Proteins
9.
Rheumatology (Oxford) ; 62(2): 977-983, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35731142

ABSTRACT

OBJECTIVE: To examine the expression of Free fatty acid receptor 2 (FFAR2) and Suppressor of cytokine signalling 3 (SOCS3) genes in asymptomatic hyperuricaemia (AH), AH with MSU crystal deposition, inter-critical gout and gout flare. METHODS: Study participants (n = 120) comprised 34 people with serum urate (SU) <360 µmol/l, 69 with AH ± MSU crystal deposition and 17 with a gout flare. Sixteen of the 17 patients with a gout flare attended a second visit 6-12 weeks later. Gene expression levels were assessed using RT-qPCR and results computed as fold changes (FC) after normalization to the reference gene. RESULTS: FFAR2 was significantly upregulated during gout flares (FC = 2.9) compared with normal SU, AH, and AH + MSU crystal deposition (FC = 1.1, P < 0.0001 for each comparison). FFAR2 was also significantly upregulated during inter-critical gout (FC = 1.8) compared with normal SU, AH and AH + MSU (FC = 1.1, P < 0.001 for each comparison). SOCS3 was significantly upregulated during gout flares (FC = 3.4) compared with normal SU, AH, and AH + MSU crystal deposition (FC = 1.1, 1.1 and 1.2, respectively, P < 0.0001 for each comparison). SOCS3 was also upregulated during inter-critical gout (FC = 2.1) compared with normal SU (P = 0.02) and AH (P = 0.006) (FC = 1.1 and 1.2, respectively). FFAR2 expression was upregulated during gout flare compared with inter-critical gout and SOCS3 expression showed negative correlation with flare duration (r = -0.49, P < 0.05). CONCLUSION: FFAR2 upregulation is associated with gout and may trigger gout flares. SOCS3 may have a role in amelioration of gout flares.


Subject(s)
Gout , Hyperuricemia , Humans , Gout/genetics , Gout/metabolism , Symptom Flare Up , Uric Acid/metabolism , Cytokines
10.
Eur J Nutr ; 62(8): 3135-3147, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37528259

ABSTRACT

PURPOSE: In this study, we explore the relationship between social jetlag (SJL), a parameter of circadian misalignment, and gut microbial composition, diet and cardiometabolic health in the ZOE PREDICT 1 cohort (NCT03479866). METHODS: We assessed demographic, diet, cardiometabolic, stool metagenomics and postprandial metabolic measures (n = 1002). We used self-reported habitual sleep (n = 934) to calculate SJL (difference in mid-sleep time point of ≥ 1.5 h on week versus weekend days). We tested group differences (SJL vs no-SJL) in cardiometabolic markers and diet (ANCOVA) adjusting for sex, age, BMI, ethnicity, and socio-economic status. We performed comparisons of gut microbial composition using machine learning and association analyses on the species level genome bins present in at least 20% of the samples. RESULTS: The SJL group (16%, n = 145) had a greater proportion of males (39% vs 25%), shorter sleepers (average sleep < 7 h; 5% vs 3%), and were younger (38.4 ± 11.3y vs 46.8 ± 11.7y) compared to the no-SJL group. SJL was associated with a higher relative abundance of 9 gut bacteria and lower abundance of 8 gut bacteria (q < 0.2 and absolute Cohen's effect size > 0.2), in part mediated by diet. SJL was associated with unfavourable diet quality (less healthful Plant-based Diet Index), higher intakes of potatoes and sugar-sweetened beverages, and lower intakes of fruits, and nuts, and slightly higher markers of inflammation (GlycA and IL-6) compared with no-SJL (P < 0.05 adjusted for covariates); rendered non-significant after multiple testing adjustments. CONCLUSIONS: Novel associations between SJL and a more disadvantageous gut microbiome in a cohort of predominantly adequate sleepers highlight the potential implications of SJL for health.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Male , Cardiovascular Diseases/complications , Circadian Rhythm , Diet , Jet Lag Syndrome/complications , Sleep
11.
J Infect Dis ; 225(12): 2142-2154, 2022 06 15.
Article in English | MEDLINE | ID: mdl-34979019

ABSTRACT

BACKGROUND: Specialized proresolution molecules (SPMs) halt the transition to chronic pathogenic inflammation. We aimed to quantify serum levels of pro- and anti-inflammatory bioactive lipids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients, and to identify potential relationships with innate responses and clinical outcome. METHODS: Serum from 50 hospital admitted inpatients (22 female, 28 male) with confirmed symptomatic SARS-CoV-2 infection and 94 age- and sex-matched controls collected prior to the pandemic (SARS-CoV-2 negative), were processed for quantification of bioactive lipids and anti-nucleocapsid and anti-spike quantitative binding assays. RESULTS: SARS-CoV-2 serum had significantly higher concentrations of omega-6-derived proinflammatory lipids and omega-6- and omega-3-derived SPMs, compared to the age- and sex-matched SARS-CoV-2-negative group, which were not markedly altered by age or sex. There were significant positive correlations between SPMs, proinflammatory bioactive lipids, and anti-spike antibody binding. Levels of some SPMs were significantly higher in patients with an anti-spike antibody value >0.5. Levels of linoleic acid and 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid were significantly lower in SARS-CoV-2 patients who died. CONCLUSIONS: SARS-CoV-2 infection was associated with increased levels of SPMs and other pro- and anti-inflammatory bioactive lipids, supporting the future investigation of the underlying enzymatic pathways, which may inform the development of novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Eicosanoids , Female , Humans , Male , Spike Glycoprotein, Coronavirus
12.
Diabetologia ; 65(2): 356-365, 2022 02.
Article in English | MEDLINE | ID: mdl-34845532

ABSTRACT

AIMS/HYPOTHESIS: Sleep, diet and exercise are fundamental to metabolic homeostasis. In this secondary analysis of a repeated measures, nutritional intervention study, we tested whether an individual's sleep quality, duration and timing impact glycaemic response to a breakfast meal the following morning. METHODS: Healthy adults' data (N = 953 [41% twins]) were analysed from the PREDICT dietary intervention trial. Participants consumed isoenergetic standardised meals over 2 weeks in the clinic and at home. Actigraphy was used to assess sleep variables (duration, efficiency, timing) and continuous glucose monitors were used to measure glycaemic variation (>8000 meals). RESULTS: Sleep variables were significantly associated with postprandial glycaemic control (2 h incremental AUC), at both between- and within-person levels. Sleep period time interacted with meal type, with a smaller effect of poor sleep on postprandial blood glucose levels when high-carbohydrate (low fat/protein) (pinteraction = 0.02) and high-fat (pinteraction = 0.03) breakfasts were consumed compared with a reference 75 g OGTT. Within-person sleep period time had a similar interaction (high carbohydrate: pinteraction = 0.001, high fat: pinteraction = 0.02). Within- and between-person sleep efficiency were significantly associated with lower postprandial blood glucose levels irrespective of meal type (both p < 0.03). Later sleep midpoint (time deviation from midnight) was found to be significantly associated with higher postprandial glucose, in both between-person and within-person comparisons (p = 0.035 and p = 0.051, respectively). CONCLUSIONS/INTERPRETATION: Poor sleep efficiency and later bedtime routines are associated with more pronounced postprandial glycaemic responses to breakfast the following morning. A person's deviation from their usual sleep pattern was also associated with poorer postprandial glycaemic control. These findings underscore sleep as a modifiable, non-pharmacological therapeutic target for the optimal regulation of human metabolic health. Trial registration ClinicalTrials.gov NCT03479866.


Subject(s)
Blood Glucose/metabolism , Breakfast , Diet , Sleep Deprivation/blood , Adolescent , Adult , Aged , Female , Glycemic Control , Glycemic Index , Humans , Male , Middle Aged , Postprandial Period/physiology , Young Adult
13.
Immunology ; 166(1): 68-77, 2022 05.
Article in English | MEDLINE | ID: mdl-35156709

ABSTRACT

SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/genetics , COVID-19 Vaccines , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , SARS-CoV-2
14.
J Hum Nutr Diet ; 35(1): 214-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34699106

ABSTRACT

BACKGROUND: The Dietary Approaches to Stop Hypertension (DASH) diet is beneficial in reducing blood pressure; however, this may be a consequence of concurrent weight reduction. In the present study, we investigated whether body mass index (BMI) mediates the association between the DASH diet and hypertension and investigate common metabolic pathways. METHODS: We included 2424 females from the cross-sectional TwinsUK cohort, with blood pressure, BMI and dietary intake measured within 1.01 (SD = 0.68) years and serum metabolomics profiling (591 metabolites). We constructed a mediation model to test the mediation effects of BMI on the total effect of the DASH diet on hypertension. To identify a metabolite panel associated with the DASH diet and BMI, we built random forest models for each trait, and selected the common metabolic contributors using five-fold cross-validation error. RESULTS: We found that BMI fully mediates the association between the DASH diet and hypertension, explaining 39.1% of the variance in hypertension. We then identified a panel of six common metabolites predicting both the DASH diet and BMI with opposing effects. Interestingly, at the univariate level, the metabolites were also associated with hypertension in the same direction as BMI. The strongest feature, 1-nonadecanoyl-GPC (19:0), was positively associated with the DASH diet (ß [SE] = 0.65 [0.12]) and negatively with BMI (ß [SE] = -1.34 [0.12]) and hypertension (odds ratio = 0.71, 95% confidence interval = 0.6-0.84). CONCLUSIONS: We highlight the role of BMI in the mechanisms by which the DASH diet influences hypertension and also highlight common metabolic pathways. Further studies should investigate the underlying molecular mechanisms to increase our understanding of the beneficial ways of treating hypertension.


Subject(s)
Dietary Approaches To Stop Hypertension , Hypertension , Body Mass Index , Cross-Sectional Studies , Diet , Female , Humans
15.
J Med Internet Res ; 24(12): e40035, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36322788

ABSTRACT

BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintaining patient confidentiality and local governance procedures.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , United Kingdom/epidemiology
16.
Gut ; 70(9): 1665-1674, 2021 09.
Article in English | MEDLINE | ID: mdl-33722860

ABSTRACT

BACKGROUND AND AIMS: Gut transit time is a key modulator of host-microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the 'blue dye' method as an inexpensive and scalable technique to measure transit time. METHODS: We assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study. RESULTS: We found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency. CONCLUSIONS: Gut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.


Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Transit , Adult , Akkermansia , Bacteroides , Bacteroidetes , Biomarkers , Coloring Agents , Feces/microbiology , Female , Gastrointestinal Transit/genetics , Gastrointestinal Transit/physiology , Humans , Male , Metagenomics , Middle Aged
17.
Circulation ; 141(17): 1393-1403, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32093510

ABSTRACT

BACKGROUND: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown. Here we show that lack of prebiotic dietary fiber leads to the development of a hypertensinogenic gut microbiota, hypertension and its complications, and demonstrate a role for G-protein coupled-receptors (GPCRs) that sense gut metabolites. METHODS: One hundred seventy-nine mice including C57BL/6J, gnotobiotic C57BL/6J, and knockout strains for GPR41, GPR43, GPR109A, and GPR43/109A were included. C57BL/6J mice were implanted with minipumps containing saline or a slow-pressor dose of angiotensin II (0.25 mg·kg-1·d-1). Mice were fed diets lacking prebiotic fiber with or without addition of gut metabolites called short-chain fatty acids ([SCFA)] produced during fermentation of prebiotic fiber in the large intestine), or high prebiotic fiber diets. Cardiac histology and function, BP, sodium and potassium excretion, gut microbiome, flow cytometry, catecholamines and methylation-wide changes were determined. RESULTS: Lack of prebiotic fiber predisposed mice to hypertension in the presence of a mild hypertensive stimulus, with resultant pathological cardiac remodeling. Transfer of a hypertensinogenic microbiota to gnotobiotic mice recapitulated the prebiotic-deprived hypertensive phenotype, including cardiac manifestations. Reintroduction of SCFAs to fiber-depleted mice had protective effects on the development of hypertension, cardiac hypertrophy, and fibrosis. The cardioprotective effect of SCFAs were mediated via the cognate SCFA receptors GPR43/GPR109A, and modulated L-3,4-dihydroxyphenylalanine levels and the abundance of T regulatory cells regulated by DNA methylation. CONCLUSIONS: The detrimental effects of low fiber Westernized diets may underlie hypertension, through deficient SCFA production and GPR43/109A signaling. Maintaining a healthy, SCFA-producing microbiota is important for cardiovascular health.


Subject(s)
Dietary Fiber/deficiency , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Hypertension , Intestinal Mucosa , Prebiotics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Hypertension/genetics , Hypertension/metabolism , Hypertension/microbiology , Hypertension/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
18.
BMC Med ; 19(1): 37, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33568158

ABSTRACT

BACKGROUND: Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19. METHODS: Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils, neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of vegetable intake on lymphocyte counts. RESULTS: Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between inflammation and diet. CONCLUSION: A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white blood cells, and a fifth of the effect is mediated by the genus Collinsella. TRIAL REGISTRATION: The ClinicalTrials.gov registration identifier is NCT03479866 .


Subject(s)
Diet , Fruit , Gastrointestinal Microbiome/genetics , Leukocytes , Vegetables , Actinobacteria , Adult , Biomarkers/blood , COVID-19 , Clostridiales , Clostridium , Fasting , Female , Humans , Interleukin-6/blood , Leukocyte Count , Lymphocyte Count , Male , Mediation Analysis , Middle Aged , RNA, Ribosomal, 16S/genetics , Ruminococcus , SARS-CoV-2
19.
Rheumatology (Oxford) ; 60(12): 5686-5696, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33710319

ABSTRACT

OBJECTIVES: To examine the association between ß-blocker prescription and first primary-care consultation for knee OA, hip OA, knee pain and hip pain. METHODS: Data source: Clinical Practice Research Datalink. Participants aged ≥40 years in receipt of new oral ß-blocker prescriptions were propensity score (PS) matched to an unexposed control. Cox proportional hazard ratios (HRs) and 95% CIs were calculated, and adjusted for non-osteoporotic fractures, number of primary-care consultations for knee or hip injury, and, the number of primary-care consultations, out-patient referrals and hospitalizations in the 12 months preceding cohort entry. Analysis was stratified according to ß-blocker class and for commonly prescribed drugs. P < 0.05 was considered statistically significant. RESULTS: A total of 111 718 ß-blocker-exposed participants were 1:1 PS matched to unexposed controls. ß-blocker prescription was associated with reduced cumulative risk of knee OA, knee pain, and hip pain consultations [with a HR (95% CI) of 0.90 (0.83, 0.98), 0.88 (0.83, 0.92) and 0.85 (0.79, 0.90), respectively]. Propranolol and atenolol were associated with a lower incidence of knee OA and knee pain consultations with a HR of between 0.78 and 0.91. ß-blockers were associated with reduced incidence of consultation for large-joint lower-limb OA/pain as a composite outcome, defined as the earliest of knee OA, knee pain, hip OA or a hip pain consultation [with a HR (95% CI) of 0.87 (0.84, 0.90)]. CONCLUSION: Commonly used ß-blockers have analgesic properties for musculoskeletal pain. Atenolol might be a therapeutic option for OA and cardiovascular co-morbidities in which ß-blockers are indicated, while propranolol may be suitable for people with co-morbid anxiety. A confirmatory randomized controlled trial is needed before clinical practice is changed.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Arthralgia/drug therapy , Drug Prescriptions/statistics & numerical data , Osteoarthritis, Knee/drug therapy , Primary Health Care/methods , Propensity Score , Referral and Consultation , Adult , Arthralgia/epidemiology , Arthralgia/etiology , Female , Follow-Up Studies , Humans , Incidence , Male , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/epidemiology , Retrospective Studies , United Kingdom/epidemiology
20.
Metabolomics ; 17(3): 29, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33655418

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is a common cause of disability in older people, but its aetiology is not yet fully understood. Biomarkers of OA from metabolomics studies have shown potential use in understanding the progression and pathophysiology of OA. OBJECTIVES: To investigate possible surrogate biomarkers of knee OA in urine using metabolomics to contribute towards a better understanding of OA progression and possible targeted treatment. METHOD: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) was applied in a case-control approach to explore the possible metabolic differences between the urinary profiles of symptomatic knee OA patients (n = 74) (subclassified into inflammatory OA, n = 22 and non-inflammatory OA, n = 52) and non-OA controls (n = 68). Univariate, multivariate and pathway analyses were performed with a rigorous validation including cross-validation, permutation test, prediction and receiver operating characteristic curve to identify significantly altered metabolites and pathways in OA. RESULTS: OA datasets generated 7405 variables and multivariate analysis showed clear separation of inflammatory OA, but not non-inflammatory OA, from non-OA controls. Adequate cross-validation (R2Y = 0.874, Q2 = 0.465) was obtained. The prediction model and the ROC curve showed satisfactory results with a sensitivity of 88%, specificity of 71% and accuracy of 77%. 26 metabolites were identified as potential biomarkers of inflammatory OA using HMDB, authentic standards and/or MS/MS database. CONCLUSION: Urinary metabolic profiles were altered in inflammatory knee OA subjects compared to those with non-inflammatory OA and non-OA controls. These altered profiles associated with perturbed activity of the TCA cycle, pyruvate and amino acid metabolism linked to inflammation, oxidative stress and collagen destruction. Of note, 2-keto-glutaramic acid level was > eightfold higher in the inflammatory OA patients compared to non-OA control, signalling a possible perturbation in glutamine metabolism related to OA progression.


Subject(s)
Body Fluids/chemistry , Body Fluids/metabolism , Chromatography, Liquid/methods , Metabolomics/methods , Tandem Mass Spectrometry/methods , Aged , Aged, 80 and over , Biomarkers , Case-Control Studies , Female , Humans , Male , Middle Aged , Multivariate Analysis , Osteoarthritis , Osteoarthritis, Knee , Oxidative Stress , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL