Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Ultraschall Med ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663433

ABSTRACT

This systematic review aims to evaluate the role of ultrasound (US) radiomics in assessing lymphadenopathy in patients with cancer and the ability of radiomics to predict metastatic lymph node involvement. A systematic literature search was performed in the PubMed (MEDLINE), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE (Ovid) databases up to June 13, 2023. 42 articles were included in which the lymph node mass was assessed with a US exam, and the analysis was performed using radiomics methods. From the survey of the selected articles, experimental evidence suggests that radiomics features extracted from US images can be a useful tool for predicting and characterizing lymphadenopathy in patients with breast, head and neck, and cervical cancer. This noninvasive and effective method allows the extraction of important information beyond mere morphological characteristics, extracting features that may be related to lymph node involvement. Future studies are needed to investigate the role of US-radiomics in other types of cancers, such as melanoma.

2.
J Transl Med ; 21(1): 725, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845764

ABSTRACT

BACKGROUND: Molecular Tumor Boards (MTB) operating in real-world have generated limited consensus on good practices for accrual, actionable alteration mapping, and outcome metrics. These topics are addressed herein in 124 MTB patients, all real-world accrued at progression, and lacking approved therapy options. METHODS: Actionable genomic alterations identified by tumor DNA (tDNA) and circulating tumor DNA (ctDNA) profiling were mapped by customized OncoKB criteria to reflect diagnostic/therapeutic indications as approved in Europe. Alterations were considered non-SoC when mapped at either OncoKB level 3, regardless of tDNA/ctDNA origin, or at OncoKB levels 1/2, provided they were undetectable in matched tDNA, and had not been exploited in previous therapy lines. RESULTS: Altogether, actionable alterations were detected in 54/124 (43.5%) MTB patients, but only in 39 cases (31%) were these alterations (25 from tDNA, 14 from ctDNA) actionable/unexploited, e.g. they had not resulted in the assignment of pre-MTB treatments. Interestingly, actionable and actionable/unexploited alterations both decreased (37.5% and 22.7% respectively) in a subset of 88 MTB patients profiled by tDNA-only, but increased considerably (77.7% and 66.7%) in 18 distinct patients undergoing combined tDNA/ctDNA testing, approaching the potential treatment opportunities (76.9%) in 147 treatment-naïve patients undergoing routine tDNA profiling for the first time. Non-SoC therapy was MTB-recommended to all 39 patients with actionable/unexploited alterations, but only 22 (56%) accessed the applicable drug, mainly due to clinical deterioration, lengthy drug-gathering procedures, and geographical distance from recruiting clinical trials. Partial response and stable disease were recorded in 8 and 7 of 19 evaluable patients, respectively. The time to progression (TTP) ratio (MTB-recommended treatment vs last pre-MTB treatment) exceeded the conventional Von Hoff 1.3 cut-off in 9/19 cases, high absolute TTP and Von Hoff values coinciding in 3 cases. Retrospectively, 8 patients receiving post-MTB treatment(s) as per physician's choice were noted to have a much longer overall survival from MTB accrual than 11 patients who had received no further treatment (35.09 vs 6.67 months, p = 0.006). CONCLUSIONS: MTB-recommended/non-SoC treatments are effective, including those assigned by ctDNA-only alterations. However, real-world MTBs may inadvertently recruit patients electively susceptible to diverse and/or multiple treatments.


Subject(s)
Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Retrospective Studies , Mutation , Neoplasms/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835424

ABSTRACT

Precision medicine has driven a major change in the treatment of many forms of cancer. The discovery that each patient is different and each tumor mass has its own characteristics has shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this sense, presents new scenarios in personalized medicine through the study of molecules, factors, and tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and complete absence of contraindications for the patient make this method applicable in a great many fields. Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly benefit from the information linked to liquid biopsy, especially in the treatment management. In this review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma and possible developments in the clinical setting.


Subject(s)
Circulating MicroRNA , Melanoma , MicroRNAs , Neoplasms, Second Primary , Neoplastic Cells, Circulating , Humans , Precision Medicine/methods , Liquid Biopsy/methods , DNA, Neoplasm/genetics , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor
4.
Semin Cell Dev Biol ; 98: 105-117, 2020 02.
Article in English | MEDLINE | ID: mdl-31112799

ABSTRACT

Deregulated cell metabolism is one of the cancer hallmarks. Mitochondrial DNA mutations and enzyme defects, aberrant tumor suppressor or oncogenic activities cause mitochondrial dysfunction leading to deregulated cellular energetics. The tumor suppressor protein, p53 is a tetrameric transcription factor that in response to diverse genotoxic and non-genotoxic insults activates a plethora of target genes to preserve genome integrity. In the last two decades the discovery of cytoplasmic p53 localization focused intense research on its extra-nuclear functions. The ability of p53 to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm have been investigated. A role of cytoplasmic p53 in autophagy, pentose phosphate pathway, fatty acid synthesis and oxidation, and drug response has been proposed. TP53 gene is mutated in more than half of human cancers. In parallel to loss of tumor suppressive functions, mutant p53 proteins often gain new tumorigenic activities (GOF, gain of function). It has been recently shown that mutant p53 proteins mediate metabolic changes thereby promoting cancer development and metastases. Here we review the contribution of either wild-type p53 or mutant p53 proteins to the fine-tuning of mitochondrial metabolism of both normal and cancer cells. Greater knowledge at the mechanistic level might provide insights to develop new cancer therapeutic approaches.


Subject(s)
Mitochondria/pathology , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917181

ABSTRACT

The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.


Subject(s)
Melanoma/diagnosis , Melanoma/therapy , Precision Medicine , Biomarkers , Biopsy , Clinical Decision-Making , Disease Management , Disease Susceptibility , Genomics/methods , Humans , Immunotherapy , Liquid Biopsy , Melanoma/etiology , Metabolomics/methods , Patient Outcome Assessment , Precision Medicine/methods , Proteomics/methods
6.
Phytopathology ; 109(4): 560-570, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30775950

ABSTRACT

Trichoderma gamsii T6085 was used in combination with a Fusarium oxysporum isolate (7121) in order to evaluate, in a multitrophic approach, their competitive ability against F. graminearum, one of the main causal agents of Fusarium head blight (FHB) on wheat. The two antagonists and the pathogen were coinoculated on two different natural substrates, wheat and rice kernels. Both T6085 and 7121, alone and coinoculated, significantly reduced the substrate colonization and mycotoxin production by the pathogen. The two antagonists did not affect each other. Using a metabolic approach (Biolog), we investigated whether exploitation competition could explain this antagonistic activity. The aim was to define whether the three fungi coexist or if one isolate nutritionally dominates another. Results obtained from Biolog suggest that no exploitative competition occurs between the antagonists and the pathogen during the colonization of the natural substrates. Interference competition was then preliminarily evaluated to justify the reduction in the pathogen's growth and to better explain mechanisms. A significant reduction of F. graminearum growth was observed when the pathogen grew in the cultural filtrates of T. gamsii T6085, both alone and cocultured with F. oxysporum 7121, thus suggesting the involvement of secondary metabolites. As far as we know, this is the first time that an ecological study has been performed to explain how and which kind of competition could be involved in a multitrophic biocontrol of FHB.


Subject(s)
Antibiosis , Biological Control Agents , Fusarium , Trichoderma , Fusarium/drug effects , Fusarium/pathogenicity , Oryza , Plant Diseases , Triticum
7.
EMBO Rep ; 17(2): 188-201, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26691213

ABSTRACT

Mutant p53 proteins are present in more than half of human cancers. Yes-associated protein (YAP) is a key transcriptional regulator controlling organ growth, tissue homeostasis, and cancer. Here, we report that these two determinants of human malignancy share common transcriptional signatures. YAP physically interacts with mutant p53 proteins in breast cancer cells and potentiates their pro-proliferative transcriptional activity. We found YAP as well as mutant p53 and the transcription factor NF-Y onto the regulatory regions of cyclin A, cyclin B, and CDK1 genes. Either mutant p53 or YAP depletion down-regulates cyclin A, cyclin B, and CDK1 gene expression and markedly slows the growth of diverse breast cancer cell lines. Pharmacologically induced cytoplasmic re-localization of YAP reduces the expression levels of cyclin A, cyclin B, and CDK1 genes both in vitro and in vivo. Interestingly, primary breast cancers carrying p53 mutations and displaying high YAP activity exhibit higher expression levels of cyclin A, cyclin B, and CDK1 genes when compared to wt-p53 tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Phosphoproteins/metabolism , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/genetics , CDC2 Protein Kinase , Cell Proliferation , Cyclin A/genetics , Cyclin A/metabolism , Cyclin B/genetics , Cyclin B/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Female , HCT116 Cells , Humans , MCF-7 Cells , Mutation , Phosphoproteins/genetics , Protein Binding , Protein Transport , Transcription Factors , Tumor Suppressor Protein p53/genetics , YAP-Signaling Proteins
8.
J Cell Biochem ; 116(3): 418-30, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25335865

ABSTRACT

ß-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one ß-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for ß-catenin. The maternal recessive mutation ichabod presents very low levels of ß-catenin2 that in turn affects dorsal axis formation, suggesting that ß-catenin1 is incapable to compensate for ß-catenin2 loss and raising the question of whether these two ß-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for ß-catenin1. By confocal co-immunofluorescent analysis and low concentration gain-of-function experiments, we show that ß-catenin1 and 2 behave in similar modes in dorsal axis induction and cellular localization. Surprisingly, we also found that in the ich embryo the mRNAs of the components of ß-catenin regulatory pathway, including ß-catenin1, are more abundant than in the Wt embryo. Increased levels of ß-catenin1 are found at the membrane level but not in the nuclei till high stage. Finally, we present evidence that ß-catenin1 cannot revert the ich phenotype because it may be under the control of a GSK3ß-independent mechanism that required Axin's RGS domain function.


Subject(s)
Axin Protein/metabolism , Mutation/genetics , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Antibody Specificity , Axin Protein/genetics , Blastula/drug effects , Blastula/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental/drug effects , Genes, Dominant , Immunohistochemistry , Lithium Chloride/pharmacology , Phenotype , Protein Stability/drug effects , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics , beta Catenin/metabolism
9.
J Exp Clin Cancer Res ; 43(1): 182, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951853

ABSTRACT

BACKGROUND: During targeted treatment, HER2-positive breast cancers invariably lose HER2 DNA amplification. In contrast, and interestingly, HER2 proteins may be either lost or gained. To longitudinally and systematically appreciate complex/discordant changes in HER2 DNA/protein stoichiometry, HER2 DNA copy numbers and soluble blood proteins (aHER2/sHER2) were tested in parallel, non-invasively (by liquid biopsy), and in two-dimensions, hence HER2-2D. METHODS: aHER2 and sHER2 were assessed by digital PCR and ELISA before and after standard-of-care treatment of advanced HER2-positive breast cancer patients (n=37) with the antibody-drug conjugate (ADC) Trastuzumab-emtansine (T-DM1). RESULTS: As expected, aHER2 was invariably suppressed by T-DM1, but this loss was surprisingly mirrored by sHER2 gain, sometimes of considerable entity, in most (30/37; 81%) patients. This unorthodox split in HER2 oncogenic dosage was supported by reciprocal aHER2/sHER2 kinetics in two representative cases, and an immunohistochemistry-high status despite copy-number-neutrality in 4/5 available post-T-DM1 tumor re-biopsies from sHER2-gain patients. Moreover, sHER2 was preferentially released by dying breast cancer cell lines treated in vitro by T-DM1. Finally, sHER2 gain was associated with a longer PFS than sHER2 loss (mean PFS 282 vs 133 days, 95% CI [210-354] vs [56-209], log-rank test p=0.047), particularly when cases (n=11) developing circulating HER2-bypass alterations during T-DM1 treatment were excluded (mean PFS 349 vs 139 days, 95% CI [255-444] vs [45-232], log-rank test p=0.009). CONCLUSIONS: HER2 gain is adaptively selected in tumor tissues and recapitulated in blood by sHER2 gain. Possibly, an increased oncogenic dosage is beneficial to the tumor during anti-HER2 treatment with naked antibodies, but favorable to the host during treatment with a strongly cytotoxic ADC such as T-DM1. In the latter case, HER2-gain tumors may be kept transiently in check until alternative oncogenic drivers, revealed by liquid biopsy, bypass HER2. Whichever the interpretation, HER2-2D might help to tailor/prioritize anti-HER2 treatments, particularly ADCs active on aHER2-low/sHER2-low tumors. TRIAL REGISTRATION: NCT05735392 retrospectively registered on January 31, 2023 https://www. CLINICALTRIALS: gov/search?term=NCT05735392.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Liquid Biopsy/methods , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Aged , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Adult , Biomarkers, Tumor
10.
Cell Death Dis ; 14(8): 535, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598177

ABSTRACT

Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Hyperthermic Intraperitoneal Chemotherapy , Genes, myc , Heat Shock Transcription Factors/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Transcription Factors/genetics , Cell Line , ErbB Receptors , MicroRNAs/genetics
11.
J Cell Biochem ; 113(3): 997-1004, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22034142

ABSTRACT

Cyclosporin A (CsA) is the prototype of immunosuppressant drugs that have revolutionized the management of all transplantation and autoimmune diseases. Side effects of CsA mainly affecting the kidney but also observed in liver and heart, limit the therapeutic use of this drug after organ transplantation. The renal toxicity of CsA is attributed to reduced renal blood flow which leads to hypoxia-reoxygenation injury accompanied by excessive generation of oxygen-derived free radicals. In several therapeutic protocols, CsA is used in association with corticosteroids to obtain better therapeutic results. Recently, our studies showed that hydrocortisone (HY) has a protective effect on CsA-induced cardiotoxicity. In fact our previous results demonstrated that in rat cardiomyocytes, CsA toxicity is due to a calcium overload, which in turn induce lipid peroxidation and determines oxidative stress-induced cell injury. Treatment with HY effectively inhibits CsA-induced toxicity, decreasing lipid peroxidation as well as calcium intracellular concentration. In this study we evaluated in vivo the effects of CsA, used alone or in association with HY, on some parameters of renal dysfunction (blood urea nitrogen; BUN, creatinine, and cholesterol), malondialdheyde (MDA) levels, antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and apoptosis. CsA administration for 24 days resulted in a marked renal oxidative stress, which significantly deranged the renal functions. Treatment with CsA in association with HY significantly improved the renal dysfunction and renal oxidative status. This study clearly suggests the role of oxidative stress in the pathogenesis of CsA-induced nephrotoxicity.


Subject(s)
Cyclosporine/toxicity , Hydrocortisone/therapeutic use , Immunosuppressive Agents/toxicity , Kidney Diseases/chemically induced , Animals , Apoptosis , Blood Pressure/drug effects , Catalase/metabolism , Cholesterol/blood , Creatinine/blood , Glutathione Peroxidase/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Urea/blood
12.
Cells ; 11(24)2022 12 08.
Article in English | MEDLINE | ID: mdl-36552729

ABSTRACT

Artificial intelligence (AI), a field of research in which computers are applied to mimic humans, is continuously expanding and influencing many aspects of our lives. From electric cars to search motors, AI helps us manage our daily lives by simplifying functions and activities that would be more complex otherwise. Even in the medical field, and specifically in oncology, many studies in recent years have highlighted the possible helping role that AI could play in clinical and therapeutic patient management. In specific contexts, clinical decisions are supported by "intelligent" machines and the development of specific softwares that assist the specialist in the management of the oncology patient. Melanoma, a highly heterogeneous disease influenced by several genetic and environmental factors, to date is still difficult to manage clinically in its advanced stages. Therapies often fail, due to the establishment of intrinsic or secondary resistance, making clinical decisions complex. In this sense, although much work still needs to be conducted, numerous evidence shows that AI (through the processing of large available data) could positively influence the management of the patient with advanced melanoma, helping the clinician in the most favorable therapeutic choice and avoiding unnecessary treatments that are sure to fail. In this review, the most recent applications of AI in melanoma will be described, focusing especially on the possible finding of this field in the management of drug treatments.


Subject(s)
Artificial Intelligence , Melanoma , Humans , Melanoma/therapy , Medical Oncology , Software , Precision Medicine
13.
Theranostics ; 12(17): 7420-7430, 2022.
Article in English | MEDLINE | ID: mdl-36438490

ABSTRACT

Rationale: Metastatic melanoma is the most aggressive and dangerous form of skin cancer. The introduction of immunotherapy with Immune checkpoint Inhibitors (ICI) and of targeted therapy with BRAF and MEK inhibitors for BRAF mutated melanoma, has greatly improved the clinical outcome of these patients. Nevertheless, response to therapy remains highly variable and the development of drug resistance continues to be a daunting challenge. Within this context there is a need to develop diagnostic tools capable of predicting response or resistance to therapy in order to select the best therapeutic approach. Over the years, accumulating evidence brought to light the role of microRNAs (miRNAs) as disease biomarkers. Methods: In particular, the detection of miRNAs in whole blood or specific blood components such as serum or plasma, allows these molecules to be good candidates for diagnosis, prognosis and for monitoring response to anticancer therapy. In this paper, we evaluated circulating basal levels of 6 previously identified miRNAs in serum samples of 70 BRAF-mutant melanoma patients before starting targeted therapy. Results: Results show that the circulating levels of the oncosuppressor miR-579-3p and of the oncomiR miR-4488 are able to predict progression free survival (PFS) but not overall survival (OS). Most importantly, we observed that the best predictor of disease outcome is represented by the ratio of circulating miR-4488 vs. miR-579-3p (miRatio). Finally, the combination of the Lactate dehydrogenase (LDH) blood levels with the two circulating miRNAs alone or together did not produce any improvement in predicting PFS indicating that miR-579-3p and miR-4488 are independent predictors of PFS as compared to LDH. Conclusions: All together these data underscored the relevance of circulating miRNAs as suitable tools to predict therapy response in melanoma and maybe further developed as companion diagnostics in the clinic.


Subject(s)
Circulating MicroRNA , Melanoma , MicroRNAs , Skin Neoplasms , Humans , Biomarkers, Tumor/genetics , Circulating MicroRNA/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology
14.
Cancers (Basel) ; 11(9)2019 09 11.
Article in English | MEDLINE | ID: mdl-31514456

ABSTRACT

Defective DNA damage response (DDR) is frequently associated with tumorigenesis. Abrogation of DDR leads to genomic instability, which is one of the most common characteristics of human cancers. TP53 mutations with gain-of-function activity are associated with tumors under high replicative stress, high genomic instability, and reduced patient survival. The BRCA1 and RAD17 genes encode two pivotal DNA repair proteins required for proper cell-cycle regulation and maintenance of genomic stability. We initially evaluated whether miR-205-5p, a microRNA (miRNA) highly expressed in head and neck squamous cell carcinoma (HNSCC), targeted BRCA1 and RAD17 expression. We found that, in vitro and in vivo, BRCA1 and RAD17 are targets of miR-205-5p in HNSCC, leading to inefficient DNA repair and increased chromosomal instability. Conversely, miR-205-5p downregulation increased BRCA1 and RAD17 messenger RNA (mRNA) levels, leading to a reduction in in vivo tumor growth. Interestingly, miR-205-5p expression was significantly anti-correlated with BRCA1 and RAD17 targets. Furthermore, we documented that miR-205-5p expression was higher in tumoral and peritumoral HNSCC tissues than non-tumoral tissues in patients exhibiting reduced local recurrence-free survival. Collectively, these findings unveil miR-205-5p's notable role in determining genomic instability in HNSCC through its selective targeting of BRCA1 and RAD17 gene expression. High miR-205-5p levels in the peritumoral tissues might be relevant for the early detection of minimal residual disease and pre-cancer molecular alterations involved in tumor development.

15.
Theranostics ; 8(7): 1850-1868, 2018.
Article in English | MEDLINE | ID: mdl-29556360

ABSTRACT

Over 70% of head & neck squamous cell carcinoma (HNSCC) patients carry TP53 oncogenic mutations. Here we studied the role of specific tumor-derived mutant p53 proteins in the aberrant transcription of long non-coding (lnc) MIR205HG gene in head and neck cancer cells. Methods: To understand the role of lncMIR205HG, that we showed to be transcriptionally regulated by mutant p53 in HNSCC, we have employed siRNA and shRNA in CAL27 and FaDu HNSCC cell lines to suppress p53 gene expression in ChIP assays and RT-qPCR. We validated our findings in a cohort of 522 HNSCC patients from The Cancer Genome Atlas Data Portal (TCGA). We further evaluated our results in 63 HNSCC tumor samples collected at our institute, 32 of which were characterized by mutated TP53 (missense mutations) while 31 were characterized by wild-type TP53. Results: Maturation of pre-MIR205HG transcript produces two non-coding RNAs, lncMIR205HG and hsa-miR-205-5p. Down-regulation of lncMIR205HG expression significantly reduced cell proliferation, cell migration and clonogenic activity of head and neck cancer cells. Expression of MIR205HG was significantly increased in HNSCC with mutated TP53 when compared with matched non-tumoral tissues. Furthermore, MIR205HG expression levels were significantly higher in tumoral samples with mutant p53 than in tumoral tissues expressing wild-type p53. Mechanistically, MIR205HG depletes endogenous miR-590-3p leading to increased cyclin B, cdk1, and YAP protein expression. Conclusions: Taken together, these findings identify a transcriptional and post-transcriptional molecular network that includes mutant p53 protein, lncMIR205HG, YAP, and other proliferation-related genes, which are enriched in HNSCC patients with poor prognosis.


Subject(s)
Cell Proliferation , MicroRNAs/antagonists & inhibitors , MicroRNAs/biosynthesis , Mutant Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Expression Profiling , Gene Regulatory Networks , Gene Silencing , Humans , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
Oncotarget ; 6(8): 5547-66, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25650659

ABSTRACT

Genomic instability (IN) is a common feature of many human cancers. The TP53 tumour suppressor gene is mutated in approximately half of human cancers. Here, we show that BRCA1 and RAD17 genes, whose derived proteins play a pivotal role in DNA damage repair, are transcriptional targets of gain-of-function mutant p53 proteins. Indeed, high levels of mutp53 protein facilitate DNA damage accumulation and severely impair BRCA1 and RAD17 expression in proliferating cancer cells. The recruitment of mutp53/E2F4 complex onto specific regions of BRCA1 and RAD17 promoters leads to the inhibition of their expression. BRCA1 and RAD17 mRNA expression is reduced in HNSCC patients carrying TP53 mutations when compared to those bearing wt-p53 gene. Furthermore, the analysis of gene expression databases for breast cancer patients reveals that low expression of DNA repair genes correlates significantly with reduced relapse free survival of patients carrying TP53 gene mutations. Collectively, these findings highlight the direct involvement of transcriptionally active gain of function mutant p53 proteins in genomic instability through the impairment of DNA repair mechanisms.


Subject(s)
BRCA1 Protein/genetics , Cell Cycle Proteins/genetics , E2F4 Transcription Factor/genetics , Genes, BRCA1 , Mutation , Tumor Suppressor Protein p53/genetics , BRCA1 Protein/biosynthesis , Breast Neoplasms/genetics , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , DNA Damage , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Genes, p53 , Genomic Instability , Head and Neck Neoplasms/genetics , Humans , Lung Neoplasms/genetics , Transfection
17.
Cell Cycle ; 10(24): 4330-40, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22134238

ABSTRACT

Aberrant activation of kinases has emerged to be a key event along with tumor progression, maintenance of tumor phenotype and response to anticancer treatments. This study documents the existence of an oncogenic auto-regulatory feedback loop that includes the Polo-like kinase-2 (Snk/Plk2) and mutant p53 proteins. Plk2 protein binds to and phosphorylates mutant p53, thereby potentiating its oncogenic activities. Phosphorylated mutant p53 binds more efficiently to p300 consequently strengthening its own transcriptional activity. Plk2 gene is regulated at a transcriptional level by both wt- and mutant p53 proteins. This leads to growth suppression or enhanced cell proliferation and chemo-resistance, respectively. In turn, the siRNA-mediated knock down of either mutant p53 or Plk2 proteins significantly curtails the growth properties of tumor cells and their chemo-resistance to anticancer treatments. Therefore, this paper identifies a novel tumor network including Plk2 and mutant p53 proteins whose triggering in response to DNA damage might disclose important implications for the treatment of human cancers.


Subject(s)
DNA Damage/physiology , Feedback, Physiological/physiology , Gene Expression Regulation, Neoplastic/physiology , Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA Primers/genetics , E1A-Associated p300 Protein/metabolism , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunoprecipitation , Phosphorylation , RNA Interference , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Transfection , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL