ABSTRACT
Functional magnetic resonance imaging (fMRI) studies have often recorded robust univariate group effects in the amygdala of subjects exposed to emotional stimuli. Yet it is unclear to what extent this effect also holds true when multi-voxel pattern analysis (MVPA) is applied at the level of the individual participant. Here we sought to answer this question. To this end, we combined fMRI data from two prior studies (N = 112). For each participant, a linear support vector machine was trained to decode the valence of emotional pictures (negative, neutral, positive) based on brain activity patterns in either the amygdala (primary region-of-interest analysis) or the whole-brain (secondary exploratory analysis). The accuracy score of the amygdala-based pattern classifications was statistically significant for only a handful of participants (4.5%) with a mean and standard deviation of 37% ± 5% across all subjects (range: 28-58%; chance-level: 33%). In contrast, the accuracy score of the whole-brain pattern classifications was statistically significant in roughly half of the participants (50.9%), and had an across-subjects mean and standard deviation of 49% ± 6% (range: 33-62%). The current results suggest that the information conveyed by the emotional pictures was encoded by spatially distributed parts of the brain, rather than by the amygdala alone, and may be of particular relevance to studies that seek to target the amygdala in the treatment of emotion regulation problems, for example via real-time fMRI neurofeedback training.
Subject(s)
Brain Mapping , Emotions , Humans , Brain Mapping/methods , Emotions/physiology , Brain/physiology , Amygdala/physiology , Magnetic Resonance Imaging/methodsABSTRACT
Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).
Subject(s)
Amyotrophic Lateral Sclerosis/rehabilitation , Aphonia/rehabilitation , Brain-Computer Interfaces , Communication Aids for Disabled , Quadriplegia/rehabilitation , Amyotrophic Lateral Sclerosis/complications , Aphonia/etiology , Electrodes, Implanted , Female , Humans , Middle Aged , Motor Cortex , Neurological Rehabilitation/instrumentation , Quadriplegia/etiologyABSTRACT
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
ABSTRACT
The structure of the human connectome develops from childhood throughout adolescence to middle age, but how these structural changes affect the speed of neuronal signaling is not well described. In 74 subjects, we measured the latency of cortico-cortical evoked responses across association and U-fibers and calculated their corresponding transmission speeds. Decreases in conduction delays until at least 30 years show that the speed of neuronal communication develops well into adulthood.
Subject(s)
Connectome , White Matter , Middle Aged , Adolescent , Humans , Child , Brain/physiology , Neurons , Signal TransductionABSTRACT
Cells in the precentral gyrus directly send signals to the periphery to generate movement and are principally organized as a topological map of the body. We find that movement-induced electrophysiological responses from depth electrodes extend this map three-dimensionally throughout the gyrus. Unexpectedly, this organization is interrupted by a previously undescribed motor association area in the depths of the midlateral aspect of the central sulcus. This 'Rolandic motor association' (RMA) area is active during movements of different body parts from both sides of the body and may be important for coordinating complex behaviors.
Subject(s)
Motor Cortex , Motor Cortex/physiology , Movement , Brain Mapping/methodsABSTRACT
Objective. In electrocorticography (ECoG), the physical characteristics of the electrode grid determine which aspect of the neurophysiology is measured. For particular cases, the ECoG grid may be tailored to capture specific features, such as in the development and use of brain-computer interfaces (BCI). Neural representations of hand movement are increasingly used to control ECoG based BCIs. However, it remains unclear which grid configurations are the most optimal to capture the dynamics of hand gesture information. Here, we investigate how the design and surgical placement of grids would affect the usability of ECoG measurements.Approach. High resolution 7T functional MRI was used as a proxy for neural activity in ten healthy participants to simulate various grid configurations, and evaluated the performance of each configuration for decoding hand gestures. The grid configurations varied in number of electrodes, electrode distance and electrode size.Main results. Optimal decoding of hand gestures occurred in grid configurations with a higher number of densely-packed, large-size, electrodes up to a grid of ~5 × 5 electrodes. When restricting the grid placement to a highly informative region of primary sensorimotor cortex, optimal parameters converged to about 3 × 3 electrodes, an inter-electrode distance of 8 mm, and an electrode size of 3 mm radius (performing at ~70% three-class classification accuracy).Significance. Our approach might be used to identify the most informative region, find the optimal grid configuration and assist in positioning of the grid to achieve high BCI performance for the decoding of hand-gestures prior to surgical implantation.
Subject(s)
Brain-Computer Interfaces , Gestures , Electrocorticography/methods , Electrodes , Electroencephalography , Humans , Magnetic Resonance ImagingABSTRACT
Brain-computer interfaces aim to provide people with paralysis with the possibility to use their neural signals to control devices. For communication, most BCIs are based on the selection of letters from a (digital) letter board to spell words and sentences. Visual mental imagery of letters could offer a new, fast and intuitive way to spell in a BCI-communication solution. Here we provide a proof of concept for the decoding of visually imagined characters from the early visual cortex using 7 Tesla functional MRI. Sixteen healthy participants visually imagined three different characters for 3, 5 and 7 s in a slow event-related design. Using single-trial classification, we were able to decode the characters with an average accuracy of 54%, which is significantly above chance level (33%). Furthermore, the imagined characters were classifiable shortly after cue onset and remained classifiable with prolonged imagery. These properties, combined with the cortical location of the early visual cortex and its decodable activity, encourage further research on intracranial interfacing using surface electrodes to bring us closer to such a visual imagery based BCI communication solution.
ABSTRACT
Analogical reasoning, the ability to learn about novel phenomena by relating it to structurally similar knowledge, develops with great variability in children. Furthermore, the development of analogical reasoning coincides with greater working memory efficiency and increasing knowledge of the entities and relations present in analogy problems. In figural matrices, a classical form of analogical reasoning assessment, some features, such as color, appear easier for children to encode and infer than others, such as orientation. Yet, few studies have structurally examined differences in the difficulty of visual relations across different age-groups. This cross-sectional study of figural analogical reasoning examined which underlying rules in figural analogies were easier or more difficult for children to correctly process. School children (N = 1422, M = 7.0 years, SD = 21 months, range 4.5-12.5 years) were assessed in analogical reasoning using classical figural matrices and memory measures. The visual relations the children had to induce and apply concerned the features: animal, color, orientation, position, quantity and size. The role of age and memory span on the children's ability to correctly process each type of relation was examined using explanatory item response theory models. The results showed that with increasing age and/or greater memory span all visual relations were processed more accurately. The "what" visual relations animal, color, quantity and size were easiest, whereas the "where" relations orientation and position were most difficult. However, the "where" visual relations became relatively easier with age and increased memory efficiency. The implications are discussed in terms of the development of visual processing in object recognition vs. position and motion encoding in the ventral ("what") and dorsal ("where") pathways respectively.