Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38772379

ABSTRACT

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Subject(s)
Neurodevelopmental Disorders , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Epilepsy/genetics , Exome Sequencing , Genetic Diseases, X-Linked/genetics , Heterozygote , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Shal Potassium Channels/genetics
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37451268

ABSTRACT

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Subject(s)
Intellectual Disability , Phosphatidylinositols , Animals , Syndrome , Actins , Zebrafish/genetics , Intellectual Disability/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphatidylinositol Phosphates
3.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909990

ABSTRACT

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple/pathology , Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/pathology , DNA Methylation , Epigenesis, Genetic , Growth Disorders/pathology , Heart Septal Defects, Ventricular/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Abnormalities, Multiple/genetics , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/genetics , Female , Genetic Predisposition to Disease , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Neurodevelopmental Disorders/genetics
4.
Genet Med ; 26(11): 101231, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39132680

ABSTRACT

PURPOSE: Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS: In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS: A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in 3 consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the 4 families shared a founder homozygous variant, whereas the third and fourth had different homozygous variants in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION: Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.

5.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31303265

ABSTRACT

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Subject(s)
Gene Expression Regulation , Mutation , Neurodevelopmental Disorders/etiology , POU Domain Factors/genetics , Transcriptional Activation , Amino Acid Sequence , Child , Female , Genetic Association Studies , Genotype , Humans , Male , Neurodevelopmental Disorders/pathology , POU Domain Factors/chemistry , Protein Conformation , Sequence Homology
6.
Am J Hum Genet ; 105(2): 283-301, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31353023

ABSTRACT

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Muscle Hypotonia/pathology , Mutation , Neurodevelopmental Disorders/pathology , Saccharomyces cerevisiae/growth & development , Adolescent , Age of Onset , Child , Child, Preschool , Female , HeLa Cells , Heterozygote , Humans , Male , Muscle Hypotonia/enzymology , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31447100

ABSTRACT

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Subject(s)
Cellular Senescence/physiology , Histones/physiology , Aneuploidy , Cell Nucleolus/metabolism , Child , Chromatin/metabolism , DNA Methylation , Female , Histones/chemistry , Humans , Infant , Male , Middle Aged
8.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30595372

ABSTRACT

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Subject(s)
Intellectual Disability/genetics , Mutation , Protein Phosphatase 2/genetics , Adolescent , Child , Child, Preschool , DNA Mutational Analysis , Female , HEK293 Cells , Haploinsufficiency/genetics , Humans , Male , Protein Binding/genetics , Protein Subunits/chemistry , Protein Subunits/metabolism , Syndrome
9.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30580808

ABSTRACT

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Subject(s)
Developmental Disabilities/complications , Developmental Disabilities/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Mutation , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , DNA-Binding Proteins , Face/abnormalities , Female , Hand Deformities, Congenital/genetics , Humans , Male , Micrognathism/genetics , Neck/abnormalities , Reelin Protein , Syndrome
10.
Genet Med ; 24(6): 1306-1315, 2022 06.
Article in English | MEDLINE | ID: mdl-35389343

ABSTRACT

PURPOSE: Few studies have systematically analyzed the structure and content of laboratory exome sequencing reports from the same patient. METHODS: We merged 8 variants from patients into "normal" exomes to create virtual patient-parent trios. We provided laboratories worldwide with the data and patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy). Laboratories analyzed the data and issued a diagnostic exome report. Reports were scored using a coding matrix developed from existing guidelines. RESULTS: In total, 41 laboratories representing 17 countries issued reports. Reporting of quality control statistics and technical information was poor (46.3%). Although 75.6% of the reports clearly stated the classification of all reported variants, few reports listed extensive evidence supporting variant classification. Only 53.1% of laboratories that reported unsolicited or secondary findings gave advice regarding health-related follow-up and 20.5% gave advice regarding cascade testing for relatives. Of the 147 variants reported, 105 (71.4%) were classified in agreement with classifications based on American College of Medical Genetics and Genomics/Association for Molecular Pathology and Association for Clinical Genomic Science guidelines. Concordance was higher for known pathogenic variants (86.3%) than for novel unpublished variants (56.8%). CONCLUSION: The considerable variability identified in the components that laboratories included in their reports and their classification of variants suggests that existing guidelines are not being used consistently with significant implications for patient care.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Exome/genetics , Genetic Testing , Genomics , Humans , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL