Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36228615

ABSTRACT

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Subject(s)
Macrophages , Neuroinflammatory Diseases , Humans , Macrophages/metabolism , Monocytes/metabolism , Microglia/metabolism , Brain
2.
Immunity ; 54(1): 176-190.e7, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33333014

ABSTRACT

The developmental and molecular heterogeneity of tissue macrophages is unravelling, as are their diverse contributions to physiology and pathophysiology. Moreover, also given tissues harbor macrophages in discrete anatomic locations. Functional contributions of specific cell populations can in mice be dissected using Cre recombinase-mediated mutagenesis. However, single promoter-based Cre models show limited specificity for cell types. Focusing on macrophages in the brain, we establish here a binary transgenic system involving complementation-competent NCre and CCre fragments whose expression is driven by distinct promoters: Sall1ncre: Cx3cr1ccre mice specifically target parenchymal microglia and compound transgenic Lyve1ncre: Cx3cr1ccre animals target vasculature-associated macrophages, in the brain, as well as other tissues. We imaged the respective cell populations and retrieved their specific translatomes using the RiboTag in order to define them and analyze their differential responses to a challenge. Collectively, we establish the value of binary transgenesis to dissect tissue macrophage compartments and their functions.


Subject(s)
Brain/cytology , Central Nervous System/physiology , Integrases/metabolism , Macrophages/physiology , Microglia/physiology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Specificity
3.
Immunity ; 53(5): 1033-1049.e7, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33049219

ABSTRACT

Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.


Subject(s)
Endotoxins/immunology , Interleukin-10/metabolism , Microglia/immunology , Microglia/metabolism , Animals , Biomarkers , Brain/immunology , Brain/metabolism , Brain/pathology , Cells, Cultured , Immunophenotyping , Interleukin-10/genetics , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipopolysaccharides/immunology , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Mice
4.
Eur J Immunol ; 50(3): 459-463, 2020 03.
Article in English | MEDLINE | ID: mdl-31785096

ABSTRACT

Ligand-dependent Cre recombinases such as the CreERT2 system allow for tamoxifen-inducible Cre recombination. Important examples are the Cx3cr1-CreERT2 and Sall1-CreERT2 lines that are widely used for fate mapping and gene deletion studies of brain macrophages. Our results now show that both CreERT2 lines can exhibit a high rate of tamoxifen-independent "leaky" excision with some reporter strains, while this is not observed with others. We suggest that this disparity is determined by the length of the floxed transcriptional STOP cassette that is incorporated in the various reporter lines. In addition, the rate of spontaneous recombination was also determined by the CreERT2 expression levels and the longevity of the CreERT2-expressing cells. The implications of these results are discussed in the context of fate mapping and inducible gene deletion studies in macrophages and microglia.


Subject(s)
Integrases , Mice, Transgenic , Microglia , Models, Animal , Recombination, Genetic , Animals , Gene Deletion , Mice , Tamoxifen
5.
Acta Neuropathol Commun ; 11(1): 85, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226256

ABSTRACT

The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.


Subject(s)
Axons , Optic Nerve Injuries , Animals , Retina , Retinal Ganglion Cells , Macrophages , Inflammation , Mammals
6.
Nat Protoc ; 17(10): 2354-2388, 2022 10.
Article in English | MEDLINE | ID: mdl-35931780

ABSTRACT

Brain-immune cross-talk and neuroinflammation critically shape brain physiology in health and disease. A detailed understanding of the brain immune landscape is essential for developing new treatments for neurological disorders. Single-cell technologies offer an unbiased assessment of the heterogeneity, dynamics and functions of immune cells. Here we provide a protocol that outlines all the steps involved in performing single-cell multi-omic analysis of the brain immune compartment. This includes a step-by-step description on how to microdissect the border regions of the mouse brain, together with dissociation protocols tailored to each of these tissues. These combine a high yield with minimal dissociation-induced gene expression changes. Next, we outline the steps involved for high-dimensional flow cytometry and droplet-based single-cell RNA sequencing via the 10x Genomics platform, which can be combined with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and offers a higher throughput than plate-based methods. Importantly, we detail how to implement CITE-seq with large antibody panels to obtain unbiased protein-expression screening coupled to transcriptome analysis. Finally, we describe the main steps involved in the analysis and interpretation of the data. This optimized workflow allows for a detailed assessment of immune cell heterogeneity and activation in the whole brain or specific border regions, at RNA and protein level. The wet lab workflow can be completed by properly trained researchers (with basic proficiency in cell and molecular biology) and takes between 6 and 11 h, depending on the chosen procedures. The computational analysis requires a background in bioinformatics and programming in R.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA , Animals , Brain , Epitopes , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Mice , RNA/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome
7.
Nat Neurosci ; 24(4): 595-610, 2021 04.
Article in English | MEDLINE | ID: mdl-33782623

ABSTRACT

Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Tumor-Associated Macrophages/cytology , Tumor-Associated Macrophages/immunology , Animals , Humans , Mice , Single-Cell Analysis
8.
Nat Neurosci ; 22(6): 1021-1035, 2019 06.
Article in English | MEDLINE | ID: mdl-31061494

ABSTRACT

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny, and subsets displayed distinct self-renewal capacity following depletion and repopulation. Single-cell and fate-mapping analysis both suggested that there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in both the healthy and diseased brain.


Subject(s)
Brain/cytology , Interferon Regulatory Factors/metabolism , Macrophages/cytology , Macrophages/physiology , Animals , Cell Differentiation/physiology , Cell Lineage/physiology , Female , Male , Mice , Mice, Inbred C57BL , Microglia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL