Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Neuroimage ; 274: 120129, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37088323

ABSTRACT

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer's disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer (https://freesurfer.net/fswiki/ThalamicNucleiDTI).


Subject(s)
Diffusion Tensor Imaging , Thalamic Nuclei , Humans , Bayes Theorem , Reproducibility of Results , Thalamic Nuclei/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
2.
Neuroimage ; 225: 117471, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33099007

ABSTRACT

Here we present a method for the simultaneous segmentation of white matter lesions and normal-appearing neuroanatomical structures from multi-contrast brain MRI scans of multiple sclerosis patients. The method integrates a novel model for white matter lesions into a previously validated generative model for whole-brain segmentation. By using separate models for the shape of anatomical structures and their appearance in MRI, the algorithm can adapt to data acquired with different scanners and imaging protocols without retraining. We validate the method using four disparate datasets, showing robust performance in white matter lesion segmentation while simultaneously segmenting dozens of other brain structures. We further demonstrate that the contrast-adaptive method can also be safely applied to MRI scans of healthy controls, and replicate previously documented atrophy patterns in deep gray matter structures in MS. The algorithm is publicly available as part of the open-source neuroimaging package FreeSurfer.


Subject(s)
Brain/pathology , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Algorithms , Atrophy/pathology , Brain/diagnostic imaging , Gray Matter/pathology , Humans , Multiple Sclerosis/diagnostic imaging , Neuroimaging , White Matter/pathology
3.
Neuroimage ; 237: 118113, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33940143

ABSTRACT

Accurate and reliable whole-brain segmentation is critical to longitudinal neuroimaging studies. We undertake a comparative analysis of two subcortical segmentation methods, Automatic Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG), recently provided in the open-source neuroimaging package FreeSurfer 7.1, with regard to reliability, bias, sensitivity to detect longitudinal change, and diagnostic sensitivity to Alzheimer's disease. First, we assess intra- and inter-scanner reliability for eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and thalamus. For intra-scanner analysis we use a large sample of participants (n = 1629) distributed across the lifespan (age range = 4-93 years) and acquired on a 1.5T Siemens Avanto (n = 774) and a 3T Siemens Skyra (n = 855) scanners. For inter-scanner analysis we use a sample of 24 participants scanned on the day with three models of Siemens scanners: 1.5T Avanto, 3T Skyra and 3T Prisma. Second, we test how each method detects volumetric age change using longitudinal follow up scans (n = 491 for Avanto and n = 245 for Skyra; interscan interval = 1-10 years). Finally, we test sensitivity to clinically relevant change. We compare annual rate of hippocampal atrophy in cognitively normal older adults (n = 20), patients with mild cognitive impairment (n = 20) and Alzheimer's disease (n = 20). We find that both ASEG and SAMSEG are reliable and lead to the detection of within-person longitudinal change, although with notable differences between age-trajectories for most structures, including hippocampus and amygdala. In summary, SAMSEG yields significantly lower differences between repeated measures for intra- and inter-scanner analysis without compromising sensitivity to changes and demonstrating ability to detect clinically relevant longitudinal changes.


Subject(s)
Aging , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Atrophy , Brain/pathology , Child , Child, Preschool , Cognitive Dysfunction/pathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
4.
Neuroimage ; 219: 117044, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32534963

ABSTRACT

Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.


Subject(s)
Brain/diagnostic imaging , Head/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Brain/physiology , Brain Mapping/methods , Computer Simulation , Electroencephalography , Head/physiology , Humans , Magnetoencephalography , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation
5.
Neuroimage ; 199: 553-569, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31129303

ABSTRACT

With the advent of convolutional neural networks (CNN), supervised learning methods are increasingly being used for whole brain segmentation. However, a large, manually annotated training dataset of labeled brain images required to train such supervised methods is frequently difficult to obtain or create. In addition, existing training datasets are generally acquired with a homogeneous magnetic resonance imaging (MRI) acquisition protocol. CNNs trained on such datasets are unable to generalize on test data with different acquisition protocols. Modern neuroimaging studies and clinical trials are necessarily multi-center initiatives with a wide variety of acquisition protocols. Despite stringent protocol harmonization practices, it is very difficult to standardize the gamut of MRI imaging parameters across scanners, field strengths, receive coils etc., that affect image contrast. In this paper we propose a CNN-based segmentation algorithm that, in addition to being highly accurate and fast, is also resilient to variation in the input acquisition. Our approach relies on building approximate forward models of pulse sequences that produce a typical test image. For a given pulse sequence, we use its forward model to generate plausible, synthetic training examples that appear as if they were acquired in a scanner with that pulse sequence. Sampling over a wide variety of pulse sequences results in a wide variety of augmented training examples that help build an image contrast invariant model. Our method trains a single CNN that can segment input MRI images with acquisition parameters as disparate as T1-weighted and T2-weighted contrasts with only T1-weighted training data. The segmentations generated are highly accurate with state-of-the-art results (overall Dice overlap=0.94), with a fast run time (≈ 45 s), and consistent across a wide range of acquisition protocols.


Subject(s)
Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Humans , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Sensitivity and Specificity
6.
Neuroimage ; 183: 314-326, 2018 12.
Article in English | MEDLINE | ID: mdl-30121337

ABSTRACT

The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.


Subject(s)
Atlases as Topic , Histological Techniques/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/diagnostic imaging , Tissue Banks , Aged , Aged, 80 and over , Bayes Theorem , Female , Humans , Male , Middle Aged
7.
Neuroimage ; 143: 235-249, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27612647

ABSTRACT

Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate automated segmentation of anatomical structures. A desirable feature for such segmentation methods is to be robust against changes in acquisition platform and imaging protocol. In this paper we validate the performance of a segmentation algorithm designed to meet these requirements, building upon generative parametric models previously used in tissue classification. The method is tested on four different datasets acquired with different scanners, field strengths and pulse sequences, demonstrating comparable accuracy to state-of-the-art methods on T1-weighted scans while being one to two orders of magnitude faster. The proposed algorithm is also shown to be robust against small training datasets, and readily handles images with different MRI contrast as well as multi-contrast data.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Statistical , Adult , Bayes Theorem , Datasets as Topic , Humans
8.
Neuroimage ; 141: 542-555, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27426838

ABSTRACT

The hippocampal formation is a complex, heterogeneous structure that consists of a number of distinct, interacting subregions. Atrophy of these subregions is implied in a variety of neurodegenerative diseases, most prominently in Alzheimer's disease (AD). Thanks to the increasing resolution of MR images and computational atlases, automatic segmentation of hippocampal subregions is becoming feasible in MRI scans. Here we introduce a generative model for dedicated longitudinal segmentation that relies on subject-specific atlases. The segmentations of the scans at the different time points are jointly computed using Bayesian inference. All time points are treated the same to avoid processing bias. We evaluate this approach using over 4700 scans from two publicly available datasets (ADNI and MIRIAD). In test-retest reliability experiments, the proposed method yielded significantly lower volume differences and significantly higher Dice overlaps than the cross-sectional approach for nearly every subregion (average across subregions: 4.5% vs. 6.5%, Dice overlap: 81.8% vs. 75.4%). The longitudinal algorithm also demonstrated increased sensitivity to group differences: in MIRIAD (69 subjects: 46 with AD and 23 controls), it found differences in atrophy rates between AD and controls that the cross sectional method could not detect in a number of subregions: right parasubiculum, left and right presubiculum, right subiculum, left dentate gyrus, left CA4, left HATA and right tail. In ADNI (836 subjects: 369 with AD, 215 with early cognitive impairment - eMCI - and 252 controls), all methods found significant differences between AD and controls, but the proposed longitudinal algorithm detected differences between controls and eMCI and differences between eMCI and AD that the cross sectional method could not find: left presubiculum, right subiculum, left and right parasubiculum, left and right HATA. Moreover, many of the differences that the cross-sectional method already found were detected with higher significance. The presented algorithm will be made available as part of the open-source neuroimaging package FreeSurfer.


Subject(s)
Aging/pathology , Alzheimer Disease/pathology , Hippocampus/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Aged , Alzheimer Disease/diagnostic imaging , Bayes Theorem , Female , Hippocampus/diagnostic imaging , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
9.
Neuroimage ; 106: 451-63, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25463466

ABSTRACT

In this paper we present a novel label fusion algorithm suited for scenarios in which different manual delineation protocols with potentially disparate structures have been used to annotate the training scans (hereafter referred to as "atlases"). Such scenarios arise when atlases have missing structures, when they have been labeled with different levels of detail, or when they have been taken from different heterogeneous databases. The proposed algorithm can be used to automatically label a novel scan with any of the protocols from the training data. Further, it enables us to generate new labels that are not present in any delineation protocol by defining intersections on the underling labels. We first use probabilistic models of label fusion to generalize three popular label fusion techniques to the multi-protocol setting: majority voting, semi-locally weighted voting and STAPLE. Then, we identify some shortcomings of the generalized methods, namely the inability to produce meaningful posterior probabilities for the different labels (majority voting, semi-locally weighted voting) and to exploit the similarities between the atlases (all three methods). Finally, we propose a novel generative label fusion model that can overcome these drawbacks. We use the proposed method to combine four brain MRI datasets labeled with different protocols (with a total of 102 unique labeled structures) to produce segmentations of 148 brain regions. Using cross-validation, we show that the proposed algorithm outperforms the generalizations of majority voting, semi-locally weighted voting and STAPLE (mean Dice score 83%, vs. 77%, 80% and 79%, respectively). We also evaluated the proposed algorithm in an aging study, successfully reproducing some well-known results in cortical and subcortical structures.


Subject(s)
Algorithms , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aging , Brain/physiology , Databases, Factual , Humans , Middle Aged , Models, Neurological , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results
10.
Neuroimage ; 113: 184-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25776214

ABSTRACT

In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.


Subject(s)
Brain Stem/anatomy & histology , Brain Stem/physiology , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/statistics & numerical data , Aged , Aging/physiology , Algorithms , Atlases as Topic , Atrophy , Bayes Theorem , Brain Stem/growth & development , Datasets as Topic , Female , Humans , Male , Mesencephalon/anatomy & histology , Mesencephalon/physiology , Middle Aged , Models, Statistical , Pons/anatomy & histology , Pons/physiology , Reproducibility of Results
11.
Neuroimage ; 115: 117-37, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25936807

ABSTRACT

Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy).


Subject(s)
Hippocampus/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Atlases as Topic , Brain/anatomy & histology , Brain/pathology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Diagnosis, Differential , Female , Hippocampus/pathology , Humans , Male , Middle Aged
12.
Neuroimage ; 111: 526-41, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25596463

ABSTRACT

OBJECTIVE: An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD: MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS: The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS: The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.


Subject(s)
Clinical Protocols , Hippocampus/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Parahippocampal Gyrus/anatomy & histology , Adult , Clinical Protocols/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards
13.
Acta Oncol ; 54(9): 1496-500, 2015.
Article in English | MEDLINE | ID: mdl-26198652

ABSTRACT

BACKGROUND: Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam CT (CBCT) can be used for MRI-only image-guided radiotherapy (IGRT) and for verifying the correctness of the corresponding pCT. MATERIAL AND METHODS: Six patients receiving palliative cranial RT were included in the study. Each patient had three-dimensional (3D) T1W MRI, a CBCT and a CT for reference. Further, a pCT was generated using a patch-based approach. MRI, pCT and CT were placed in the same frame of reference, matched to CBCT and the differences noted. Paired pCT-CT and pCT-CBCT data were created in bins of 10 HU and the absolute difference calculated. The data were converted to relative electron densities (RED) using the CT or a CBCT calibration curve. The latter was either based on a CBCT phantom (phan) or a paired CT-CBCT population (pop) of the five other patients. RESULTS: Non-significant (NS) differences in the pooled CT-CBCT, MRI-CBCT and pCT-CBCT transformations were noted. The largest deviations from the CT-CBCT reference were < 1 mm and 1°. The average median absolute error (MeAE) in HU was 184 ± 34 and 299 ± 34 on average for pCT-CT and pCT-CBCT, respectively, and was significantly different (p < 0.01) in each patient. The average MeAE in RED was 0.108 ± 0.025, 0.104 ± 0.011 and 0.099 ± 0.017 for pCT-CT, pCT-CBCT phan (p < 0.01 on 2 patients) and pCT-CBCT pop (NS), respectively. CONCLUSIONS: CBCT can be used for patient setup with either MRI or pCT as reference. The correctness of pCT can be verified from CBCT using a population-based calibration curve in the treatment geometry.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Cone-Beam Computed Tomography , Radiotherapy, Image-Guided , Brain Neoplasms/pathology , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Palliative Care , Radiotherapy Planning, Computer-Assisted
14.
PLoS One ; 19(3): e0298642, 2024.
Article in English | MEDLINE | ID: mdl-38483873

ABSTRACT

BACKGROUND: Conventional brain magnetic resonance imaging (MRI) produces image intensities that have an arbitrary scale, hampering quantification. Intensity scaling aims to overcome this shortfall. As neurodegenerative and inflammatory disorders may affect all brain compartments, reference regions within the brain may be misleading. Here we summarize approaches for intensity scaling of conventional T1-weighted (w) and T2w brain MRI avoiding reference regions within the brain. METHODS: Literature was searched in the databases of Scopus, PubMed, and Web of Science. We included only studies that avoided reference regions within the brain for intensity scaling and provided validating evidence, which we divided into four categories: 1) comparative variance reduction, 2) comparative correlation with clinical parameters, 3) relation to quantitative imaging, or 4) relation to histology. RESULTS: Of the 3825 studies screened, 24 fulfilled the inclusion criteria. Three studies used scaled T1w images, 2 scaled T2w images, and 21 T1w/T2w-ratio calculation (with double counts). A robust reduction in variance was reported. Twenty studies investigated the relation of scaled intensities to different types of quantitative imaging. Statistically significant correlations with clinical or demographic data were reported in 8 studies. Four studies reporting the relation to histology gave no clear picture of the main signal driver of conventional T1w and T2w MRI sequences. CONCLUSIONS: T1w/T2w-ratio calculation was applied most often. Variance reduction and correlations with other measures suggest a biologically meaningful signal harmonization. However, there are open methodological questions and uncertainty on its biological underpinning. Validation evidence on other scaling methods is even sparser.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
15.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37333251

ABSTRACT

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

16.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896568

ABSTRACT

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Brain , Imaging, Three-Dimensional , Machine Learning , Humans , Imaging, Three-Dimensional/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Photography/methods , Dissection , Magnetic Resonance Imaging/methods , Neuropathology/methods , Neuroimaging/methods
17.
ArXiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37292481

ABSTRACT

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

18.
Neuroimage ; 64: 32-42, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22960087

ABSTRACT

The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in the detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 µm × 120 µm × 120 µm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0mm for the left hemispheres (n=7) and 3.2mm for the right hemispheres (n=7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of the perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Net/anatomy & histology , Pattern Recognition, Automated/methods , Temporal Lobe/anatomy & histology , Aged , Artificial Intelligence , Cadaver , Female , Humans , Image Enhancement/methods , Male , Reproducibility of Results , Sensitivity and Specificity
19.
Neuroimage Clin ; 38: 103354, 2023.
Article in English | MEDLINE | ID: mdl-36907041

ABSTRACT

In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Reproducibility of Results , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted
20.
Med Image Anal ; 86: 102789, 2023 05.
Article in English | MEDLINE | ID: mdl-36857946

ABSTRACT

Despite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation CNN robust against changes in contrast and resolution. SynthSeg is trained with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training data. Consequently, SynthSeg can segment real scans from a wide range of target domains without retraining or fine-tuning, which enables straightforward analysis of huge amounts of heterogeneous clinical data. Because SynthSeg only requires segmentations to be trained (no images), it can learn from labels obtained by automated methods on diverse populations (e.g., ageing and diseased), thus achieving robustness to a wide range of morphological variability. We demonstrate SynthSeg on 5,000 scans of six modalities (including CT) and ten resolutions, where it exhibits unparallelled generalisation compared with supervised CNNs, state-of-the-art domain adaptation, and Bayesian segmentation. Finally, we demonstrate the generalisability of SynthSeg by applying it to cardiac MRI and CT scans.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Humans , Bayes Theorem , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL