Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Immunity ; 45(6): 1285-1298, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27939673

ABSTRACT

Allergic disease originates in early life and polymorphisms in interleukin-33 gene (IL33) and IL1RL1, coding for IL-33R and decoy receptor sST2, confer allergy risk. Early life T helper 2 (Th2) cell skewing and allergy susceptibility are often seen as remnants of feto-maternal symbiosis. Here we report that shortly after birth, innate lymphoid type 2 cells (ILC2s), eosinophils, basophils, and mast cells spontaneously accumulated in developing lungs in an IL-33-dependent manner. During the phase of postnatal lung alveolarization, house dust mite exposure further increased IL-33, which boosted cytokine production in ILC2s and activated CD11b+ dendritic cells (DCs). IL-33 suppressed IL-12p35 and induced OX40L in neonatal DCs, thus promoting Th2 cell skewing. Decoy sST2 had a strong preventive effect on asthma in the neonatal period, less so in adulthood. Thus, enhanced neonatal Th2 cell skewing to inhaled allergens results from postnatal hyperactivity of the IL-33 axis during a period of maximal lung remodeling.


Subject(s)
Asthma/immunology , Interleukin-33/immunology , Lung/growth & development , Lung/immunology , Th2 Cells/immunology , Animals , Animals, Newborn , Disease Models, Animal , Hypersensitivity/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyroglyphidae/immunology , Signal Transduction/immunology
2.
J Allergy Clin Immunol ; 149(4): 1413-1427.e2, 2022 04.
Article in English | MEDLINE | ID: mdl-34506849

ABSTRACT

BACKGROUND: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE: We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS: Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS: Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS: Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.


Subject(s)
Asthma , Bronchial Hyperreactivity , Allergens , Animals , Bronchial Hyperreactivity/pathology , Cytokines , Dermatophagoides pteronyssinus , Disease Models, Animal , Humans , Immunity, Innate , Interleukin-33 , Lung , Lymphocytes , Mice , Protein Serine-Threonine Kinases , Pyroglyphidae , Th2 Cells
3.
J Allergy Clin Immunol ; 144(6): 1648-1659.e9, 2019 12.
Article in English | MEDLINE | ID: mdl-31330218

ABSTRACT

BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.


Subject(s)
Asthma/immunology , Ceramides/immunology , Lipid Metabolism/immunology , Membrane Proteins/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Ceramides/genetics , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipid Metabolism/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Th2 Cells/pathology
4.
J Immunol ; 199(1): 48-61, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28515280

ABSTRACT

Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future.


Subject(s)
Asthma/drug therapy , Dexamethasone/pharmacology , Epithelial Cells/drug effects , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/metabolism , Respiratory Mucosa/drug effects , Animals , Asthma/immunology , Asthma/physiopathology , Dexamethasone/therapeutic use , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/metabolism , Gene Expression Regulation , Glucocorticoids/therapeutic use , Inflammation/drug therapy , Inflammation/immunology , Mice , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Signal Transduction
5.
J Allergy Clin Immunol ; 140(1): 76-88.e7, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27746238

ABSTRACT

BACKGROUND: Allergic asthma is a CD4 TH2-lymphocyte driven disease characterized by airway hyperresponsiveness and eosinophilia. B cells can present antigens to CD4 T cells and produce IgE immunoglobulins that arm effector cells; however, mouse models are inconclusive on whether B cells are necessary for asthma development. OBJECTIVES: We sought to address the role of B cells in a house dust mite (HDM)-driven TH2-high asthma mouse model. METHODS: Wild-type and B cell-deficient muMT mice were sensitized and challenged through the airways with HDM extracts. The antigen-presenting capacities of B cells were studied by using new T-cell receptor transgenic 1-DER mice specific for the Der p 1 allergen. RESULTS: In vitro-activated B cells from HDM-exposed mice presented antigen to 1-DER T cells and induced a TH2 phenotype. In vivo B cells were dispensable for activation of naive 1-DER T cells but necessary for full expansion of primed 1-DER T cells. At high HDM challenge doses, B cells were not required for development of pulmonary asthmatic features yet contributed to TH2 expansion in the mediastinal lymph nodes but not in the lungs. When the amount of challenge allergen was decreased, muMT mice had reduced asthma features. Under these limiting conditions, B cells contributed also to expansion of TH2 effector cells in the lungs and central memory T cells in the mediastinal lymph nodes. CONCLUSION: B cells are a major part of the adaptive immune response to inhaled HDM allergen, particularly when the amount of inhaled allergen is low, by expanding allergen-specific T cells.


Subject(s)
Antigens, Dermatophagoides/immunology , Asthma/immunology , B-Lymphocytes/immunology , Th2 Cells/immunology , Animals , Antigen Presentation , Cytokines/immunology , Lymph Nodes/cytology , Mice, Inbred C57BL , Mice, Transgenic , Pyroglyphidae/immunology , Spleen/cytology
6.
J Allergy Clin Immunol ; 140(5): 1364-1377.e2, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28189772

ABSTRACT

BACKGROUND: Exposure to allergens, such as house dust mite (HDM), through the skin often precedes allergic inflammation in the lung. It was proposed that TH2 sensitization through the skin occurs when skin barrier function is disrupted by, for example, genetic predisposition, mechanical damage, or the enzymatic activity of allergens. OBJECTIVE: We sought to study how HDM applied to unmanipulated skin leads to TH2 sensitization and to study which antigen-presenting cells mediate this process. METHODS: HDM was applied epicutaneously by painting HDM on unmanipulated ear skin or under an occlusive tape. HDM challenge was through the nose. Mouse strains lacking different dendritic cell (DC) populations were used, and 1-DER T cells carrying a transgenic T-cell receptor reactive to Der p 1 allergen were used as a readout for antigen presentation. The TH2-inducing capacity of sorted skin-derived DC subsets was determined by means of adoptive transfer to naive mice. RESULTS: Epicutaneous HDM application led to TH2 sensitization and eosinophilic airway inflammation upon intranasal HDM challenge. Skin sensitization did not require prior skin damage or enzymatic activity within HDM extract, yet was facilitated by applying the allergen under an occlusive tape. Primary proliferation of 1-DER T cells occurred only in the regional skin-draining lymph nodes. Epicutaneous sensitization was found to be driven by 2 variants of interferon regulatory factor 4-dependent dermal type 2 conventional DC subsets and not by epidermal Langerhans cells. CONCLUSION: These findings identify skin type 2 conventional DCs as crucial players in TH2 sensitization to common inhaled allergens that enter the body through the skin and can provoke features of allergic asthma.


Subject(s)
Dendritic Cells/immunology , Hypersensitivity/immunology , Interferon Regulatory Factors/metabolism , Langerhans Cells/immunology , Skin/immunology , Animals , Antigen Presentation , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Cells, Cultured , Cysteine Endopeptidases/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyroglyphidae/immunology , Receptors, Antigen, T-Cell/genetics , Th2 Cells/immunology
8.
iScience ; 26(12): 108570, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38162021

ABSTRACT

The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency of IRE1 and its downstream transcription factor XBP1 in NKp46+ NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1-sufficient Ly49H+ NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that IRE1/XBP1 activation is required during vigorous NK cell proliferation early upon viral infection, as part of a canonical UPR response.

9.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37347461

ABSTRACT

Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.


Subject(s)
Immunity, Innate , Interleukin-33 , Animals , Humans , Mice , Diet, High-Fat/adverse effects , Interleukin-1 Receptor-Like 1 Protein , Lymphocytes/metabolism , Mice, Inbred C57BL , Obesity/metabolism
10.
Front Immunol ; 11: 606805, 2020.
Article in English | MEDLINE | ID: mdl-33519816

ABSTRACT

The Adjuvant System AS01 contains monophosphoryl lipid A (MPL) and the saponin QS-21 in a liposomal formulation. AS01 is included in recently developed vaccines against malaria and varicella zoster virus. Like for many other adjuvants, induction of adaptive immunity by AS01 is highly dependent on the ability to recruit and activate dendritic cells (DCs) that migrate to the draining lymph node for T and B cell stimulation. The objective of this study was to more precisely address the contribution of the different conventional (cDC) and monocyte-derived DC (MC) subsets in the orchestration of the adaptive immune response after immunization with AS01 adjuvanted vaccine. The combination of MPL and QS-21 in AS01 induced strong recruitment of CD26+XCR1+ cDC1s, CD26+CD172+ cDC2s and a recently defined CCR2-dependent CD64-expressing inflammatory cDC2 (inf-cDC2) subset to the draining lymph node compared to antigen alone, while CD26-CD64+CD88+ MCs were barely detectable. At 24 h post-vaccination, cDC2s and inf-cDC2s were superior amongst the different subsets in priming antigen-specific CD4+ T cells, while simultaneously presenting antigen to CD8+ T cells. Diphtheria toxin (DT) mediated depletion of all DCs prior to vaccination completely abolished adaptive immune responses, while depletion 24 h after vaccination mainly affected CD8+ T cell responses. Vaccinated mice lacking Flt3 or the chemokine receptor CCR2 showed a marked deficit in inf-cDC2 recruitment and failed to raise proper antibody and T cell responses. Thus, the adjuvant activity of AS01 is associated with the potent activation of subsets of cDC2s, including the newly described inf-cDC2s.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Dendritic Cells/drug effects , Herpes Zoster Vaccine/pharmacology , Lipid A/analogs & derivatives , Receptors, CCR2/metabolism , Saponins/pharmacology , Viral Envelope Proteins/pharmacology , fms-Like Tyrosine Kinase 3/metabolism , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Immunization , Lipid A/pharmacology , Liposomes , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/pharmacology , Receptors, CCR2/genetics , Signal Transduction , fms-Like Tyrosine Kinase 3/genetics
11.
J Exp Med ; 216(9): 2010-2023, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31296735

ABSTRACT

The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20-/- cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20-/- cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis.


Subject(s)
Homeostasis , Killer Cells, Natural/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Survival , Lymphopenia/metabolism , Lymphopenia/pathology , Mice , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency
12.
EMBO Mol Med ; 10(4)2018 04.
Article in English | MEDLINE | ID: mdl-29444897

ABSTRACT

House dust mite (HDM)-allergic asthma is driven by T helper 2 (Th2) lymphocytes, but also innate immune cells control key aspects of the disease. The precise function of innate natural killer (NK) cells during the initiation and propagation of asthma has been very confusing, in part because different, not entirely specific, strategies were used to target these cells. We show that HDM inhalation rapidly led to the accumulation of NK cells in the lung-draining lymph nodes and of activated CD69+ NK cells in the bronchoalveolar lumen. However, genetically engineered Ncr1-DTA or Ncr1-DTR mice that constitutively or temporarily lack NK cells, still developed all key features of acute or chronic HDM-driven asthma, such as bronchial hyperreactivity, Th2 cytokine production, eosinophilia, mucus overproduction, and Th2-dependent immunoglobulin serum titers. The same results were obtained by administration of conventional NK1.1 or asialo-GM1 NK cell-depleting antibodies, antibody-mediated blocking of the NKG2D receptor, or genetic NKG2D deficiency. Thus, although NK cells accumulate in allergen-challenged lungs, our findings comprehensively demonstrate that these cells are not required for HDM-driven asthma in the mouse.


Subject(s)
Antigens, Ly/metabolism , Asthma/metabolism , Killer Cells, Natural/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Pyroglyphidae/immunology , Animals , Female , Male , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism
13.
J Invest Dermatol ; 138(6): 1360-1370, 2018 06.
Article in English | MEDLINE | ID: mdl-29288652

ABSTRACT

Children with atopic dermatitis show an increased risk to develop asthma later in life, a phenomenon referred to as "atopic march," which emphasizes the need for secondary prevention therapies. This study aimed to investigate whether relief of skin inflammation by glucocorticoids and peroxisome proliferator-activated receptor agonists might influence the subsequent development of asthma in a murine model for the atopic march in which mice were repeatedly exposed to house dust mite via the skin, followed by exposure to house dust mite in lungs. To abrogate atopic dermatitis, mice received topical treatment with glucocorticoid receptor/peroxisome proliferator-activated receptor-γ agonists. Nuclear receptor ligand effects were assessed on primary keratinocytes and dendritic cells, as central players in skin inflammation. Prior house dust mite-induced skin inflammation aggravates allergic airway inflammation and induces a mixed T helper type 2/T helper type 17 response in the lungs. Cutaneous combined activation of glucocorticoid receptor/peroxisome proliferator-activated receptor-γ reduced skin inflammation to a higher extent compared to single activation. Additive anti-inflammatory effects were more prominent in dendritic cells, as compared to keratinocytes. Alleviation of allergic skin inflammation by activation of glucocorticoid receptor/peroxisome proliferator-activated receptor-γ appeared insufficient to avoid the allergic immune response in the lungs, but efficiently reduced asthma severity by counteracting the Th17 response. Glucocorticoid receptor/peroxisome proliferator-activated receptor-γ co-activation represents a potent remedy against allergic skin inflammation and worsening of atopic march.


Subject(s)
Asthma/prevention & control , Dermatitis, Atopic/drug therapy , Glucocorticoids/pharmacology , PPAR gamma/metabolism , Receptors, Glucocorticoid/metabolism , Administration, Cutaneous , Animals , Asthma/diagnosis , Asthma/immunology , Dendritic Cells , Dermatitis, Atopic/complications , Dermatitis, Atopic/immunology , Disease Models, Animal , Female , Glucocorticoids/therapeutic use , Humans , Keratinocytes , Lung/cytology , Lung/immunology , Mice , Mice, Inbred C57BL , PPAR gamma/agonists , Primary Cell Culture , Pyroglyphidae/immunology , Receptors, Glucocorticoid/agonists , Severity of Illness Index , Skin/cytology , Skin/drug effects , Skin/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
14.
Cell Rep ; 18(12): 3005-3017, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329691

ABSTRACT

Peripheral tolerance is crucial for avoiding activation of self-reactive T cells to tissue-restricted antigens. Sterile tissue injury can break peripheral tolerance, but it is unclear how autoreactive T cells get activated in response to self. An example of a sterile injury is myocardial infarction (MI). We hypothesized that tissue necrosis is an activator of dendritic cells (DCs), which control tolerance to self-antigens. DC subsets of a murine healthy heart consisted of IRF8-dependent conventional (c)DC1, IRF4-dependent cDC2, and monocyte-derived DCs. In steady state, cardiac self-antigen α-myosin was presented in the heart-draining mediastinal lymph node (mLN) by cDC1s, driving the proliferation of antigen-specific CD4+ TCR-M T cells and their differentiation into regulatory cells (Tregs). Following MI, all DC subsets infiltrated the heart, whereas only cDCs migrated to the mLN. Here, cDC2s induced TCR-M proliferation and differentiation into interleukin-(IL)-17/interferon-(IFN)γ-producing effector cells. Thus, cardiac-specific autoreactive T cells get activated by mature DCs following myocardial infarction.


Subject(s)
Dendritic Cells/immunology , Myocardial Infarction/immunology , Myocardial Infarction/pathology , T-Lymphocytes/immunology , Animals , CD11c Antigen/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Interferon Regulatory Factors/metabolism , Lymph Nodes/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/pathology , Myocardium/pathology , Myosins/metabolism , Phenotype , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL