Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Infect Dis ; 230(2): e268-e278, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38169323

ABSTRACT

BACKGROUND: Tuberculous meningitis (TBM) is difficult to diagnose. We investigated whether a 3-gene host response signature in blood can distinguish TBM from other brain infections. METHODS: The expression of 3 genes (dual specificity phosphatase 3 [DUSP3], guanylate-binding protein [GBP5], krupple-like factor 2 [KLF2]) was analyzed by RNA sequencing of archived whole blood from 4 cohorts of Vietnamese adults: 281 with TBM, 279 with pulmonary tuberculosis, 50 with other brain infections, and 30 healthy controls. Tuberculosis scores (combined 3-gene expression) were calculated following published methodology and discriminatory performance compared using area under a receiver operator characteristic curve (AUC). RESULTS: GBP5 was upregulated in TBM compared to other brain infections (P < .001), with no difference in DUSP3 and KLF2 expression. The diagnostic performance of GBP5 alone (AUC, 0.74; 95% confidence interval [CI], .67-.81) was slightly better than the 3-gene tuberculosis score (AUC, 0.66; 95% CI, .58-.73) in TBM. Both GBP5 expression and tuberculosis score were higher in participants with human immunodeficiency virus (HIV; P < .001), with good diagnostic performance of GBP5 alone (AUC, 0.86; 95% CI, .80-.93). CONCLUSIONS: The 3-gene host signature in whole blood has the ability to discriminate TBM from other brain infections, including in individuals with HIV. Validation in large prospective diagnostic study is now required.


Subject(s)
Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/blood , Tuberculosis, Meningeal/genetics , Male , Female , Adult , Middle Aged , GTP-Binding Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Diagnosis, Differential , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/blood , Biomarkers/blood , Young Adult , Vietnam , ROC Curve
2.
Nanotechnology ; 35(26)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38527359

ABSTRACT

A novel, rapid, and facile method for one-step sonoelectrochemical synthesis of zinc oxide nanoparticles (UEZ) was introduced in this study. The optimum operating parameters have been selected at a voltage of 7.5 V, KCl concentration of 0.5 M, and the reaction time of 60 min. The as-prepared UEZ were characterized by XRD, SEM, and HRTEM. It was found that the UEZ has a hexagonal wurtzite structure with high crystalline quality, good purity, a size range of 30-100 nm, and good photocatalytic degradation of methylene blue. This work provides a facile route for large-scale synthesizing ZnO nanoparticles via anodization.

3.
Nanotechnology ; 32(46)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34359057

ABSTRACT

In this study, we report a facile and effective approach for large-scale production of nitrogen-doped TiO2nanocrystals (UNTs) by a combination of ultrasonic irradiation and electrochemistry at room temperature using NH4NO3electrolyte as the nitrogen source. The as-prepared UNTs were then characterized by x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV-visible diffuse reflectance spectroscopy. The results indicated that the nitrogen content of UNTs reached 9.3% and bandgap energy of 2.62 eV, thus gave the high photocatalytic degradation of methylene blue under visible light irradiation. The mechanism for the formation of UNTs by ultrasonic-assisted electrochemical approach was also proposed.

4.
Nanotechnology ; 32(16): 16LT01, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33455951

ABSTRACT

In this study, oxygenated graphene nanosheets (OGNs) were successfully synthesized using a simple electrochemical exfoliation approach and applied to remove methylene blue (MB) in an aqueous solution. The surface morphology and structure of the OGNs were characterized by scanning electron microscopy, transmission electron microscopy, Raman, and x-ray photoelectron spectroscopy. The adsorption performance of OGNs towards aqueous MB was tested by batch experiments. Results showed that a large number of functional groups in OGNs enhanced the removal of MB from the aqueous solution due to the electrostatic interactions between the electrochemically oxygenated groups (e.g. C-OH, C-O, and C=O) and dye molecules. Using Langmuir adsorption isotherm, the maximum MB adsorption capacity (q max) was determined as high as 476.19 mg g-1. These results suggested that the as-prepared OGNs is an effective and promising adsorbent for removing MB, which could be studied extensively for color removal in wastewater treatment.

5.
Elife ; 132024 Oct 30.
Article in English | MEDLINE | ID: mdl-39475467

ABSTRACT

Mortality and morbidity from tuberculous meningitis (TBM) are common, primarily due to inflammatory response to Mycobacterium tuberculosis infection, yet the underlying mechanisms remain poorly understood. We aimed to uncover genes and pathways associated with TBM pathogenesis and mortality, and determine the best predictors of death, utilizing whole-blood RNA sequencing from 281 Vietnamese adults with TBM, 295 pulmonary tuberculosis (PTB), and 30 healthy controls. Through weighted gene co-expression network analysis, we identified hub genes and pathways linked to TBM severity and mortality, with a consensus analysis revealing distinct patterns between HIV-positive and HIV-negative individuals. We employed multivariate elastic-net Cox regression to select candidate predictors of death, then logistic regression and internal bootstrap validation to choose best predictors. Increased neutrophil activation and decreased T and B cell activation pathways were associated with TBM mortality. Among HIV-positive individuals, mortality associated with increased angiogenesis, while HIV-negative individuals exhibited elevated TNF signaling and impaired extracellular matrix organization. Four hub genes-MCEMP1, NELL2, ZNF354C, and CD4-were strong TBM mortality predictors. These findings indicate that TBM induces a systemic inflammatory response similar to PTB, highlighting critical genes and pathways related to death, offering insights for potential therapeutic targets alongside a novel four-gene biomarker for predicting outcomes.


Tuberculous meningitis is a dangerous condition caused by the bacteria responsible for tuberculosis spreading from the lungs to the brain. It affects more than 150,000 adults a year worldwide, and results in death or brain damage in half of all patients. People living with HIV are particularly at risk for negative outcomes. These severe forms of tuberculous meningitis may be linked to the immune system becoming over-active while trying to fight the disease and harming the brain in the process. Detecting this hyperinflammation via blood sample analyzes has remained challenging so far, as traditional approaches can only offer partial information on the inflammatory response. In response, Hai, Nhat et al. took advantage of new genetic approaches to examine the expression of around 20,000 genes in the blood of HIV-positive and HIV-negative patients with tuberculous meningitis or lung tuberculosis, as well as in healthy individuals. Identifying which genes are more or less expressed in the different groups of volunteers can help to better understand the mechanisms associated with tuberculous meningitis, particularly in its most dangerous forms. Such analysis could also allow scientists to pinpoint which genes to monitor to efficiently detect patients at higher risk of severe complications. The results show that tuberculous meningitis mortality was associated with a distinct pattern of immune cell response; white blood cells known as neutrophils were increasingly activated while T and B cells showed decreased activity. Increased mortality was also linked to different patterns of gene activity between patients living with or without HIV. Overall, inflammatory genes were more activated in HIV-positive tuberculous meningitis patients than in their HIV-negative counterparts. Finally, Hai, Nhat et al. found that the blood activity levels of just four specific genes formed a signature associated with increased risk of death from tuberculous meningitis. In the future, medical professionals may be able to use this signature to rapidly identify patients who require intensive care and more specialized treatments. The findings also reveal immune system processes and molecules that may serve as potential drug targets for future therapies against this disease.


Subject(s)
Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/genetics , Tuberculosis, Meningeal/blood , Adult , Male , Female , Middle Aged , Transcriptome/genetics , Mycobacterium tuberculosis/genetics , HIV Infections/complications , HIV Infections/genetics , Young Adult , Vietnam , Gene Expression Profiling
6.
R Soc Open Sci ; 10(2): 220819, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778963

ABSTRACT

A green synthetic approach to synthesize silver nanoparticles (AgNPs) using the stem extract of Piper chaudocanum for highly sensitive colorimetric detection of Hg2+ with a low limit of detection of 23 nM and easy colorimetric read-out has been reported. In addition, the biosynthesized AgNPs demonstrated efficient antibacterial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The morphology and structure of the as-synthesized AgNPs were examined using SEM, TEM, EDX, XRD and FT-IR analyses. The XRD and TEM results confirm the formation of AgNPs with an average particle size of 8-12 nm. The TLC, CC and HPLC revealed that four main compounds, pentacosanoic acid (1), piperine (2), ß-sitosterol (3), and campesterol glucoside (4), isolated from P. chaudocanum extract act as reducing and stabilizing agents for AgNP formation, and piperine plays a vital role in green synthesis. The chemical structures of these compounds were determined by ESI MS, FTIR, and one- and two-dimensional NMR spectroscopic data analysis. This approach is an efficient, green, cost-effective, eco-friendly and promising technique for synthesizing AgNPs with applications in the colorimetric detection of Hg2+ and antibacterial activity.

7.
RSC Adv ; 13(16): 11171-11181, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37056971

ABSTRACT

In this work, a new facile one-spot method has been designed to fabricate a magnetic recyclable Fe3O4/rice husk biochar photocatalyst (FBP) for the removal of Ciprofloxacin (CIP) in aqueous solution. This method combines ultrasonic-assisted impregnation and precipitation, which can overcome the difficulties of long-time reactions, complex procedures, and extreme condition requirements. The successful fabrication of the Fe3O4/biochar material has been proven by a series of material characterization techniques, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and vibrating sample magnetometer (VSM). Moreover, the as-product FBP exhibited the excellent ability of photodegrading CIP and the possibility of magnetic recovery from the aqueous solution, suggesting a potential solution for removing antibiotic pollutants in environmental remediation.

8.
RSC Adv ; 13(11): 7372-7379, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36895775

ABSTRACT

A novel facile combination of precipitation and plasma discharge reaction is successfully employed for one-step synthesis of an α-Fe2O3-Fe3O4 graphene nanocomposite (GFs). The co-existence and anchoring of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles onto a graphene sheet in the as synthesized GFs were verified by results of XRD, Raman, SEM, TEM, and XPS. HRTEM characterization was used for confirming the bonding between α-Fe2O3/Fe3O4 nanoparticles and the graphene sheet. Consequently, GFs shows superior photodegrading performance towards methylene blue (MB), compared to individual α-Fe2O3/Fe3O4 nanoparticles, as a result of band gap narrowing and the electron-hole pair recombination rate reducing. Moreover, GFs allows a good possibility of separating and recycling under an external-magnetic field, suggesting potential in visible-light-promoted photocatalytic applications.

9.
RSC Adv ; 12(17): 10608-10618, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425023

ABSTRACT

In this study, we provide a simple and green approach to recycle waste zinc carbon batteries for making carbon dots and porous carbon material. The carbon dots are easily synthesized by one green step, the hydrothermal treatment of a carbon rod in a mixture of DI water and pure ethanol to obtain a blue fluorescence under UV light, which can be used directly as a fluorescence ink. The as-prepared carbon dot process give typical dots with a uniform diameter from 3 to 8 nm with a strong slight blue fluorescent. The porous carbon material is also recycled from carbon powder in a waste battery via one green step annealing process without any chemical activation and with a hierarchically porous structure. This porous carbon material is demonstrated as an electrode for symmetrical solid state supercapacitors (SSCs) in a sandwich structure: porous carbon/PVA-KOH/porous carbon. The SSCs using recycled porous carbon electrodes exhibit a good energy density of 4.58 W h kg-1 at a power density of 375 W kg-1 and 97.6% retention after 2000 cycles. The facile one green step of hydrothermal and also that of calcination provide a promising strategy to recycle waste zinc carbon batteries, which transfers the excellent applications.

10.
FEMS Microbiol Lett ; 368(16)2021 09 01.
Article in English | MEDLINE | ID: mdl-34415008

ABSTRACT

Chitinases are enzymes that catalyze the degradation of chitin, a major component of the cell walls of pathogenic fungi and cuticles of insects, gaining increasing attention for the control of fungal pathogens and insect pests. Production of recombinant chitinase in a suitable host can result in a more pure product with less processing time and a significantly larger yield than that produced by native microorganisms. The present study aimed to express the synthetic chi42 gene (syncodChi42), which was optimized from the chi42 gene of Trichoderma asperellum SH16, in Escherichia coli to produce 42 kDa chitinase (Ta-CHI42); then determined the activity of this enzyme, characterizations and in vitro antifungal activity as well as its immunogenicity in mice. The results showed that Ta-CHI42 was overexpressed in E. coli. Analysis of the colloidal chitin hydrolytic activity of purified Ta-CHI42 on an agar plate revealed that this enzyme was in a highly active form. This is a neutral chitinase with pH stability in a range of 6-8 and has an optimum temperature of 45°C with thermal stability in a range of 25-35°C. The chitinolytic activity of Ta-CHI42 was almost completely abolished by 5 mM Zn2+ or 1% SDS, whereas it remained about haft under the effect of 1 M urea, 1% Triton X-100 or 5 mM Cu2+. Except for ions such as Mn2+ and Ca2+ at 5 mM that have enhanced chitinolytic activity; 5 mM of Na+, Fe2+ or Mg2+ ions or 1 mM EDTA negatively impacted the enzyme. Ta-CHI42 at 60 U/mL concentration strongly inhibited the growth of the pathogenic fungus Aspergillus niger. Analysis of western blot indicated that the polyclonal antibody against Ta-CHI42 was greatly produced in mice. It can be used to analyze the expression of the syncodChi42 gene in transgenic plants, through immunoblotting assays, for resistance to pathogenic fungi.


Subject(s)
Chitinases , Gene Expression , Hypocreales , Animals , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Escherichia coli/genetics , Genes, Synthetic/genetics , Hypocreales/enzymology , Hypocreales/genetics , Mice
11.
Ultrason Sonochem ; 34: 978-983, 2017 01.
Article in English | MEDLINE | ID: mdl-27773329

ABSTRACT

We present a novel and highly efficient method for exfoliating of graphite to produce graphene via the synergistic effects of in-situ plasma induced electrochemical exfoliation with ultrasonic energy, called ultrasonic-assisted cathodic electrochemical discharge. This method can work at moderate temperatures without the need of acidic media or expensive ionic electrolyte. The produced graphene exhibited a large lateral dimension of approximately 6µm and a thickness of 2.5nm, corresponding to approximately seven layers of graphene. An exfoliating mechanism of graphite to produce graphene sheets is also proposed in this study.

12.
Article in Vi | WPRIM | ID: wpr-2944

ABSTRACT

Infant with high risk of Clifford syndrome was predicted by mean of amniotic fluid index (AFI) measurement before labor. There is reliability by underwent ultrasound evaluation for AFI measurement with modified four quadrant techniques before labor. 287 pregnant women were involved in this study. Authors found that: A high negative linear regression correlation between AFI and gestational age 38 to 42 weeks. After 38 weeks the AFI appeared to decline gradually the mean AFI was 144+/-40 in 38 weeks and 88+/-35 in 42 weeks of gestational age. There is a high relationship between Clifford syndrome and AFI. The cut-off point AFI <=40 as a predictor for predicting the fetal outcome related Clifford syndrome with the positive predictive value = 90. The negative predictive value: 98.2%. The specificity predictive value 99% and the positive predictive value: 64%.


Subject(s)
Amniotic Fluid , Prognosis , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL