Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Publication year range
1.
Pathobiology ; : 1-12, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643752

ABSTRACT

INTRODUCTION: Acute myeloid leukemia (AML) patients may receive hypomethylating agents such as decitabine (DAC) as part of their treatment. Not all patients respond to this therapy, and if they do, the clinical response may occur only after 3-6 courses of treatment. Hence, early biomarkers predicting response would be very useful. METHODS: We retrospectively analyzed a cohort of 22 AML patients who were treated with DAC. Histology of the bone marrow biopsy, pathogenic mutations, and methylation status were related to the treatment response. RESULTS: In 8/22 (36%) patients, an erythroid dominant response (EDR) pattern, defined as a ratio of myeloid cells/erythroid cells <1, was observed. In the remaining 14 cases, a myeloid predominance was preserved during treatment. No difference in the hypomethylating effect of DAC treatment was observed in patients with and without EDR, as global 5-methylcytosine levels dropped similarly in both groups. Mutational analysis by NGS using a panel of commonly mutated genes in AML showed that patients with an early EDR harbored on average less mutations, with U2AF1 mutations occurring more frequently, whereas RUNX1 mutations were underrepresented compared to non-EDR cases. Interestingly, the development of an EDR correlated with complete remission (7/8 cases with an EDR vs. only 2/14 cases without an EDR). CONCLUSION: We conclude that early histological bone marrow examination for the development of an EDR may be helpful to predict response in AML patients during treatment with DAC.

2.
Blood ; 138(26): 2753-2767, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34724563

ABSTRACT

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Europe , Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics , Prognosis
3.
BMC Health Serv Res ; 23(1): 228, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890512

ABSTRACT

BACKGROUND: Two most important factors determining treatment success in chronic myeloid leukemia (CML) are adequate medication compliance and molecular monitoring albeit still being suboptimal. The CMyLife platform is an eHealth innovation, co-created with and for CML patients, aiming to improve their care, leading to an increased quality of life and the opportunity of hospital-free care. OBJECTIVE: To explore the effectiveness of CMyLife in terms of information provision, patient empowerment, medication compliance, molecular monitoring, and quality of life. METHODS: Effectiveness of CMyLife was explored using a patient-preference trial. Upon completion of the baseline questionnaire, participants actively used (intervention group) or did not actively use (questionnaire group) the CMyLife platform for at least 6 months, after which they completed the post-intervention questionnaire. Scores between the intervention group and the questionnaire group were compared with regard to the within-subject change between baseline and post-measurement using Generalized Estimating Equation models. RESULTS: At baseline, 33 patients were enrolled in the questionnaire group and 75 in the intervention group. Online health information knowledge improved significantly when actively using CMyLife and patients felt more empowered. No significant improvements were found regarding medication compliance and molecular monitoring, which were already outstanding. Self-reported effectiveness showed that patients experienced that using CMyLife improved their medication compliance and helped them to oversee their molecular monitoring. Patients using CMyLife reported more symptoms but were better able to manage these. CONCLUSIONS: Since hospital-free care has shown to be feasible in time of the COVID-19 pandemic, eHealth-based innovations such as CMyLife could be a solution to maintain the quality of care and make current oncological health care services more sustainable. TRIAL REGISTRATION: ClinicalTrials.gov NCT04595955 , 22/10/2020.


Subject(s)
COVID-19 , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Chronic Disease , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Pandemics , Quality of Life
4.
J Med Internet Res ; 25: e45259, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713242

ABSTRACT

BACKGROUND: The evaluation of a continuously evolving eHealth tool in terms of improvement and implementation in daily practice is unclear. The CMyLife digital care platform provides patient-centered care by empowering patients with chronic myeloid leukemia, with a focus on making medication compliance insightful, discussable, and optimal, and achieving optimal control of the biomarker BCR-ABL1. OBJECTIVE: The aim of this study was to investigate to what extent the participatory action research approach is suitable for the improvement and scientific evaluation of eHealth innovations in daily clinical practice (measured by user experiences) combined with the promotion of patient empowerment. METHODS: The study used iterative cycles of planning, action, and reflection, whereby participants' experiences (patients, health care providers, the CMyLife team, and app suppliers) with the platform determined next actions. Co-design workshops were the foundation of this cyclic process. Moreover, patients filled in 2 sets of questionnaires for assessing experiences with CMyLife, the actual use of the platform, and the influence of the platform after 3 and at least 6 months. Data collected during the workshops were analyzed using content analysis, which is often used for making a practical guide to action. Descriptive statistics were used to characterize the study population in terms of information related to chronic myeloid leukemia and sociodemographics, and to describe experiences with the CMyLife digital care platform and the actual use of this platform. RESULTS: The co-design workshops provided insights that contributed to the improvement, implementation, and evaluation of CMyLife and empowered patients with chronic myeloid leukemia (for example, simplification of language, and improvement of the user friendliness of functionalities). The results of the questionnaires indicated that (1) the platform improved information provision on chronic myeloid leukemia in 67% (33/49) of patients, (2) the use of the medication app improved medication compliance in 42% (16/38) of patients, (3) the use of the guideline app improved guideline adherence in 44% (11/25) of patients, and (4) the use of the platform caused patients to feel more empowered. CONCLUSIONS: A participatory action research approach is suited to scientifically evaluate digital care platforms in daily clinical practice in terms of improvement, implementation, and patient empowerment. Systematic iterative evaluation of users' needs and wishes is needed to keep care centered on patients and keep the innovation up-to-date and valuable for users.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Emotions , Guideline Adherence , Health Personnel , Health Services Research
5.
Blood ; 135(14): 1161-1170, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243522

ABSTRACT

Anemia is a major and currently poorly understood clinical manifestation of hematopoietic aging. Upon aging, hematopoietic clones harboring acquired leukemia-associated mutations expand and become detectable, now referred to as clonal hematopoiesis (CH). To investigate the relationship between CH and anemia of the elderly, we explored the landscape and dynamics of CH in older individuals with anemia. From the prospective, population-based Lifelines cohort (n = 167 729), we selected all individuals at least 60 years old who have anemia according to World Health Organization criteria (n = 676) and 1:1 matched control participants. Peripheral blood of 1298 individuals was analyzed for acquired mutations at a variant allele frequency (VAF) of 1% or higher in 27 driver genes. To track clonal evolution over time, we included all available follow-up samples (n = 943). CH was more frequently detected in individuals with anemia (46.6%) compared with control individuals (39.1%; P = .007). Although no differences were observed regarding commonly detected DTA mutations (DNMT3A, TET2, ASXL1) in individuals with anemia compared with control individuals, other mutations were enriched in the anemia cohort, including TP53 and SF3B1. Unlike individuals with nutrient deficiency (P = .84), individuals with anemia of chronic inflammation and unexplained anemia revealed a higher prevalence of CH (P = .035 and P = .017, respectively) compared with their matched control individuals. Follow-up analyses revealed that clones may expand and decline, generally showing only a subtle increase in VAF (mean, 0.56%) over the course of 44 months, irrespective of the presence of anemia. Specific mutations were associated with different growth rates and propensities to acquire an additional hit. In contrast to smaller clones (<5% VAF), which did not affect overall survival, larger clones were associated with increased risk for death.


Subject(s)
Anemia/genetics , Hematopoiesis , Mutation , Age Factors , Aged , Aging , Anemia/epidemiology , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prospective Studies
6.
Blood ; 131(16): 1846-1857, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29311096

ABSTRACT

Therapy-related myeloid neoplasms (tMNs) are severe adverse events that can occur after treatment with autologous hematopoietic stem cell transplantation (ASCT). This study aimed to investigate the development of tMNs following ASCT at the molecular level by whole-exome sequencing (WES) and targeted deep sequencing (TDS) in sequential (pre-) tMN samples. WES identified a significantly higher number of mutations in tMNs as compared with de novo myelodysplastic syndrome (MDS) (median 27 vs 12 mutations; P = .001). The mutations found in tMNs did not carry a clear aging-signature, unlike the mutations found in de novo MDS, indicating a different mutational mechanism. In some patients, tMN mutations were identified in both myeloid and T cells, suggesting that tMNs may originate from early hematopoietic stem cells (HSCs). However, the mutational spectra of tMNs and the preceding malignancies did not overlap, excluding common ancestry for these malignancies. By use of TDS, tMN mutations were identified at low variant allele frequencies (VAFs) in transplant material in 70% of the patients with tMNs. Reconstruction of clonal patterns based on VAFs revealed that premalignant clones can be present more than 7 years preceding a tMN diagnosis, a finding that was confirmed by immunohistochemistry on bone marrow biopsies. Our results indicate that tMN development after ASCT originates in HSCs bearing (pre-)tMN mutations that are present years before disease onset and that post-ASCT treatment can influence the selection of these clones. Early detection of premalignant clones and monitoring of their evolutionary trajectory may help to predict the development of tMNs and guide early intervention in the future.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myeloproliferative Disorders , Neoplasms, Second Primary , Adult , Aged , Autografts , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/etiology , Hematologic Neoplasms/genetics , Humans , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/therapy , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/genetics , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/genetics , Retrospective Studies
7.
Blood ; 131(12): 1275-1291, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29330221

ABSTRACT

Measurable residual disease (MRD; previously termed minimal residual disease) is an independent, postdiagnosis, prognostic indicator in acute myeloid leukemia (AML) that is important for risk stratification and treatment planning, in conjunction with other well-established clinical, cytogenetic, and molecular data assessed at diagnosis. MRD can be evaluated using a variety of multiparameter flow cytometry and molecular protocols, but, to date, these approaches have not been qualitatively or quantitatively standardized, making their use in clinical practice challenging. The objective of this work was to identify key clinical and scientific issues in the measurement and application of MRD in AML, to achieve consensus on these issues, and to provide guidelines for the current and future use of MRD in clinical practice. The work was accomplished over 2 years, during 4 meetings by a specially designated MRD Working Party of the European LeukemiaNet. The group included 24 faculty with expertise in AML hematopathology, molecular diagnostics, clinical trials, and clinical medicine, from 19 institutions in Europe and the United States.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Clinical Trials as Topic , Consensus Development Conferences as Topic , Europe , Guidelines as Topic , Humans , Leukemia, Myeloid, Acute/pathology , Neoplasm, Residual , Prognosis , United States
8.
Bioinformatics ; 34(24): 4205-4212, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29945233

ABSTRACT

Motivation: The application of next-generation sequencing in research and particularly in clinical routine requires valid variant calling results. However, evaluation of several commonly used tools has pointed out that not a single tool meets this requirement. False positive as well as false negative calls necessitate additional experiments and extensive manual work. Intelligent combination and output filtration of different tools could significantly improve the current situation. Results: We developed appreci8, an automatic variant calling pipeline for calling single nucleotide variants and short indels by combining and filtering the output of eight open-source variant calling tools, based on a novel artifact- and polymorphism score. Appreci8 was trained on two data sets from patients with myelodysplastic syndrome, covering 165 Illumina samples. Subsequently, appreci8's performance was tested on five independent data sets, covering 513 samples. Variation in sequencing platform, target region and disease entity was considered. All calls were validated by re-sequencing on the same platform, a different platform or expert-based review. Sensitivity of appreci8 ranged between 0.93 and 1.00, while positive predictive value ranged between 0.65 and 1.00. In all cases, appreci8 showed superior performance compared to any evaluated alternative approach. Availability and implementation: Appreci8 is freely available at https://hub.docker.com/r/wwuimi/appreci8/. Sequencing data (BAM files) of the 678 patients analyzed with appreci8 have been deposited into the NCBI Sequence Read Archive (BioProjectID: 388411; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411). Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Software , Computational Biology , Humans , Myelodysplastic Syndromes/genetics
10.
Haematologica ; 104(7): 1460-1472, 2019 07.
Article in English | MEDLINE | ID: mdl-30655368

ABSTRACT

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.


Subject(s)
Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Gene Expression Regulation , Induced Pluripotent Stem Cells/pathology , Megakaryocytes/pathology , Mutation , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/metabolism , Blood Platelets/metabolism , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
11.
Haemophilia ; 25(1): 127-135, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30431218

ABSTRACT

INTRODUCTION: Bleeding assessment tools and laboratory phenotyping often remain inconclusive in patients with a haemorrhagic diathesis. AIM: To describe the phenotype and genetic profile of patients with a bleeding tendency. METHODS: Whole exome sequencing (WES) was incorporated in the routine diagnostic pathway of patients with thrombocytopenia (n = 17), platelet function disorders (n = 19) and an unexplained bleeding tendency (n = 51). The analysis of a panel of 126 OMIM (Online Mendelian Inheritance in Man) genes involved in thrombosis and haemostasis was conducted, and if negative, further exome-wide analysis was performed if informed consent given. RESULTS: Eighteen variants were detected in 15 patients from a total of 87 patients (17%). Causative variants were observed in MYH9 (two cases), SLFN14, P2RY12 and GP9. In addition, one case was considered solved due to combined carriership of F7 and F13A1 variants and one with combined carriership of F2, F8 and VWF, all variants related to secondary haemostasis protein aberrations. Two variants of uncertain significance (VUS) were found in two primary haemostasis genes: GFI1B and VWF. Eight patients were carriers of autosomal recessive disorders. Exome-wide analysis was performed in 54 cases and identified three variants in candidate genes. CONCLUSION: Based on our findings, we conclude that performing WES at the end of the diagnostic trajectory can be of additive value to explain the complete bleeding phenotype in patients without a definite diagnosis after conventional laboratory tests. Discovery of combinations of (novel) genes that predispose to bleeding will increase the diagnostic yield in patients with an unexplained bleeding diathesis.


Subject(s)
Exome Sequencing/methods , Hemorrhagic Disorders/diagnosis , Adult , Endoribonucleases/genetics , Factor VII/genetics , Factor VIII/genetics , Female , Genetic Predisposition to Disease , Genotype , Hemorrhagic Disorders/genetics , Humans , Male , Middle Aged , Molecular Motor Proteins/genetics , Myosin Heavy Chains/genetics , von Willebrand Factor/genetics
12.
Haematologica ; 103(1): 148-162, 2018 01.
Article in English | MEDLINE | ID: mdl-28983057

ABSTRACT

Inherited platelet disorders are a heterogeneous group of rare diseases, caused by inherited defects in platelet production and/or function. Their genetic diagnosis would benefit clinical care, prognosis and preventative treatments. Until recently, this diagnosis has usually been performed via Sanger sequencing of a limited number of candidate genes. High-throughput sequencing is revolutionizing the genetic diagnosis of diseases, including bleeding disorders. We have designed a novel high-throughput sequencing platform to investigate the unknown molecular pathology in a cohort of 82 patients with inherited platelet disorders. Thirty-four (41.5%) patients presented with a phenotype strongly indicative of a particular type of platelet disorder. The other patients had clinical bleeding indicative of platelet dysfunction, but with no identifiable features. The high-throughput sequencing test enabled a molecular diagnosis in 70% of these patients. This sensitivity increased to 90% among patients suspected of having a defined platelet disorder. We found 57 different candidate variants in 28 genes, of which 70% had not previously been described. Following consensus guidelines, we qualified 68.4% and 26.3% of the candidate variants as being pathogenic and likely pathogenic, respectively. In addition to establishing definitive diagnoses of well-known inherited platelet disorders, high-throughput sequencing also identified rarer disorders such as sitosterolemia, filamin and actinin deficiencies, and G protein-coupled receptor defects. This included disease-causing variants in DIAPH1 (n=2) and RASGRP2 (n=3). Our study reinforces the feasibility of introducing high-throughput sequencing technology into the mainstream laboratory for the genetic diagnostic practice in inherited platelet disorders.


Subject(s)
Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Adolescent , Adult , Aged , Aged, 80 and over , Blood Platelets/metabolism , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Infant , Male , Middle Aged , Phenotype , Reproducibility of Results , Sequence Analysis, DNA , Young Adult
13.
N Engl J Med ; 370(3): 245-53, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24325358

ABSTRACT

The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.


Subject(s)
Blood Platelets/pathology , Gray Platelet Syndrome/genetics , Megakaryocytes/pathology , Mutation , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Bone Marrow/pathology , Female , Genes, Dominant , Gray Platelet Syndrome/pathology , Humans , Male , Pedigree , Stem Cells , Thrombocytopenia/genetics
15.
Biochim Biophys Acta ; 1855(2): 144-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25579174

ABSTRACT

The epigenetic mark 5-hydroxymethylcytosine (5hmC) has gained interest since 2009, when it was discovered that Ten-Eleven-Translocation (TET) proteins catalyze the conversion of 5-methylcytosine (5mC) into 5hmC. This conversion appears to be an intermediate step in the active DNA demethylation pathway. Factors that regulate DNA hydroxymethylation are frequently affected in cancer, leading to deregulated 5hmC levels. In this review, we will discuss the regulation of DNA hydroxymethylation, defects in this pathway in cancer, and novel therapies that may correct deregulated (hydroxy)methylation of DNA.


Subject(s)
Biomarkers, Tumor/biosynthesis , Cytosine/analogs & derivatives , DNA Methylation/genetics , Neoplasms/genetics , 5-Methylcytosine/analogs & derivatives , Cytosine/biosynthesis , DNA-Binding Proteins/genetics , Dioxygenases , Epigenesis, Genetic/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Neoplasms/pathology , Proto-Oncogene Proteins/genetics
16.
EMBO J ; 31(19): 3833-44, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22863777

ABSTRACT

Activation of the NF-κB pathway requires the formation of Met1-linked 'linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed 'Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains.


Subject(s)
Carrier Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Carrier Proteins/chemistry , HEK293 Cells , Humans , NF-kappa B/metabolism , Protein Structure, Tertiary , Ubiquitination/physiology
17.
Blood ; 124(7): 1110-8, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24986689

ABSTRACT

Patients with acute myeloid leukemia (AML) frequently harbor mutations in genes involved in the DNA (hydroxy)methylation pathway (DNMT3A, TET2, IDH1, and IDH2). In this study, we measured 5-hydroxymethylcytosine (5hmC) levels in 206 clinically and molecularly well-characterized younger adult AML patients (≤60 years) included in the European Organization for Research and Treatment of Cancer/Gruppo Italiano Malattie Ematologiche dell'Adulto (EORTC/GIMEMA) AML-12 06991 clinical trial and correlated the 5hmC levels with mutational status and overall survival (OS). In healthy control cells, 5hmC levels were confined to a narrow range (1.5-fold difference), whereas in AML cells, a much wider range was detected (15-fold difference). We identified 3 5hmC subpopulations in our patient cohort (low, intermediate, and high). The low 5hmC group consisted almost entirely of patients with TET2 or IDH mutations. As expected, TET2 and IDH mutated patients had significantly lower levels of 5hmC compared with patients without mutated TET2 and IDH1/2 (both P < .001). Interestingly, high 5hmC levels correlated with inferior OS (high vs intermediate 5hmC: P = .047, hazard ratio [HR] = 1.81). Multivariate analysis revealed that high 5hmC is an independent poor prognostic indicator for OS (high vs intermediate 5hmC: P = .01, HR = 2.10). This trial was registered at www.clinicaltrials.gov as NCT00004128.


Subject(s)
Cytosine/analogs & derivatives , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Mutation , 5-Methylcytosine/analogs & derivatives , Acute Disease , Adolescent , Adult , Aged , Cytosine/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Dioxygenases , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid/pathology , Middle Aged , Prognosis , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL