Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36820393

ABSTRACT

The model yeast Saccharomyces cerevisiae is being developed as a biocatalyst for the conversion of renewable lignocellulosic biomass into biofuels. The ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) solubilizes lignocellulose for deconstruction into fermentable sugars, but it inhibits yeast fermentation. EMIMCl tolerance is mediated by the efflux pump Sge1p and uncharacterized protein Ilt1p. Through genetic investigation, we found that disruption of ion homeostasis through mutations in genes encoding the Trk1p potassium transporter and its protein kinase regulators, Sat4p and Hal5p, causes EMIMCl sensitivity. These results suggest that maintenance of ion homeostasis is important for tolerance to EMIMCl.

2.
Synth Syst Biotechnol ; 7(2): 738-749, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35387233

ABSTRACT

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.

SELECTION OF CITATIONS
SEARCH DETAIL