Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Cancer ; 129(12): 1903-1914, 2023 12.
Article in English | MEDLINE | ID: mdl-37875732

ABSTRACT

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer. METHODS: Differential expression analyses using Genome Expression Omnibus (GEO) database, clinical samples and cell lines were performed. Androgen or antagonist's cellular treatments and knockdown experiments were used to detect changes in cell morphology, molecular markers, migration properties and in vivo tumour growth. Chromatin immunoprecipitation-sequencing (ChIP-Seq) data and ChIP assays were analysed to decipher androgen receptor (AR) binding. RESULTS: We demonstrated that FSCN1 is upregulated during neuroendocrine differentiation of prostate cancer in vitro, leading to phenotypic changes and NEPC marker expression. In human prostate cancer samples, FSCN1 expression is restricted to NEPC tumours. We showed that the androgen-activated AR downregulates FSCN1 expression and works as a transcriptional repressor to directly suppress FSCN1 expression. AR antagonists alleviate this repression. In addition, FSCN1 silencing further impairs in vivo tumour growth. CONCLUSION: Collectively, our findings identify FSCN1 as an AR-repressed gene. Particularly, it is involved in NEPC aggressiveness. Our results provide the rationale for the future clinical development of FSCN1 inhibitors in NEPC patients.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Androgen Antagonists/therapeutic use , Androgens , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
2.
Cancer Lett ; 438: 32-43, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30201302

ABSTRACT

Prostate cancers have a strong propensity to metastasize to bone and promote osteoblastic lesions. TMPRSS2:ERG is the most frequent gene rearrangement identified in prostate cancer, but whether it is involved in prostate cancer bone metastases is largely unknown. We exploited an intratibial metastasis model to address this issue and we found that ectopic expression of the TMPRSS2:ERG fusion enhances the ability of prostate cancer cell lines to induce osteoblastic lesions by stimulating bone formation and inhibiting the osteolytic response. In line with these in vivo results, we demonstrate that the TMPRSS2:ERG fusion protein increases the expression of osteoblastic markers, including Collagen Type I Alpha 1 Chain and Alkaline Phosphatase, as well as Endothelin-1, a protein with a documented role in osteoblastic bone lesion formation. Moreover, we determined that the TMPRSS2:ERG fusion protein is bound to the regulatory regions of these genes in prostate cancer cell lines, and we report that the expression levels of these osteoblastic markers are correlated with the expression of the TMPRSS2:ERG fusion in patient metastasis samples. Taken together, our results reveal that the TMPRSS2:ERG gene fusion is involved in osteoblastic lesion formation induced by prostate cancer cells.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Osteoblasts/metabolism , Prostatic Neoplasms/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Biomarkers, Tumor/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Cell Line, Tumor , Collagen Type I, alpha 1 Chain , Endothelin-1/genetics , Endothelin-1/metabolism , Humans , Male , Mice, SCID , Oncogene Proteins, Fusion/metabolism , Osteoblasts/pathology , PC-3 Cells , Phenotype , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transplantation, Heterologous , Tumor Burden/genetics
3.
Oncotarget ; 8(7): 11827-11840, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28055969

ABSTRACT

Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear. Since bone metastasis starts with the tropism of cancer cells to bone through specific migratory and invasive processes involving osteomimetic capabilities, it is crucial to better our understanding of the influence of TMPRSS2-ERG expression in the mechanisms underlying the bone tropism properties of PCa cells. We developed bioluminescent cell lines expressing the TMPRSS2-ERG fusion in order to assess its role in tumor growth and bone metastasis appearance in a mouse model. First, we showed that the TMPRSS2-ERG fusion increases cell migration and subcutaneous tumor size. Second, using intracardiac injection experiments in mice, we showed that the expression of TMPRSS2-ERG fusion increases the number of metastases in bone. Moreover, TMPRSS2-ERG affects the pattern of metastatic spread by increasing the incidence of tumors in hind limbs and spine, which are two of the most frequent sites of human PCa metastases. Finally, transcriptome analysis highlighted a series of genes regulated by the fusion and involved in the metastatic process. Altogether, our work indicates that TMPRSS2-ERG increases bone tropism of PCa cells and metastasis development.


Subject(s)
Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Oncogene Proteins, Fusion/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Animals , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Heterografts , Humans , Male , Mice , Mice, SCID , Neoplasm Metastasis , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL