Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Anal Chem ; 96(1): 480-487, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38150379

ABSTRACT

Gut microbiome targeting has emerged as a new generation of personalized medicine and a potential wellness and disease driver. Specifically, the gut redox balance plays a key role in shaping the gut microbiota and its link with the host, immune system, and disease evolution. In this sense, precise and personalized nutrition has proven synergy and capability to modulate the gut microbiome environment through the formulation of dietary interventions, such as vitamin support. Accordingly, there are urgent demands for simple and effective analytical platforms for understanding the relationship between the tailored vitamin administration and the gut microbiota balance by rapid noninvasive on-the-spot oxidation/reduction potential monitoring for frequent and close surveillance of the gut redox status and targeting by personalized nutrition interventions. Herein, we present a disposable potentiometric sensor chip and a homemade multiwell potentiometric array to address the interplay of vitamin levels with the oxidation/reduction potential in human feces and saliva. The potentiometric ORP sensing platforms have been successfully validated and scaled up for the setup of a multiapplication prototype for cross-talk-free simple screening of many specimens. The interpersonal variability of the gut microbiota environment illustrates the potential of feces and saliva samples for noninvasive, frequent, and decentralized monitoring of the gut redox status to support timely human microbiota surveillance and guide precise dietary intervention toward restoring and promoting personalized gut redox balance.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Feces , Vitamins , Oxidation-Reduction
2.
BMC Med ; 22(1): 294, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020289

ABSTRACT

BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease. METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis. RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R 2 < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05). CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.


Subject(s)
Endometriosis , Gastrointestinal Microbiome , Humans , Endometriosis/microbiology , Female , Gastrointestinal Microbiome/physiology , Adult , Case-Control Studies , Estonia/epidemiology , Cohort Studies , Middle Aged , Metagenomics , Dysbiosis/microbiology , Young Adult
3.
Reprod Biomed Online ; 47(1): 129-150, 2023 07.
Article in English | MEDLINE | ID: mdl-37208218

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting reproductive-aged women, but the cause remains unclear. Recent evidence has linked microbial composition with PCOS; however, the results are inconsistent. The aim of this systematic review was to gather current knowledge of the microbes across body sites (oral cavity, blood, vagina/cervix, gut) in women with PCOS, and meta-analyse the microbial diversity in PCOS. For this purpose, a systematic search using PubMed, Web of Science, Cochrane and Scopus was carried out. After selection, 34 studies met the inclusion criteria. Most of the studies associated changes in the microbiome with PCOS, whereas heterogeneity of the studies in terms of ethnicity, body mass index (BMI) and methodology, among other confounders, made it difficult to corroborate this relationship. In fact, 19 out of 34 of the studies were categorised as having high risk of bias when the quality assessment was conducted. Our meta-analysis on the gut microbiome of 14 studies demonstrated that women with PCOS possess significantly lower microbial alpha diversity compared with controls (SMD = -0.204; 95% CI -0.360 to -0.048; P = 0.010; I2 = 5.508, by Shannon Index), which may contribute to the development of PCOS. Nevertheless, future studies should specifically overcome the shortcomings of the current studies by through well planned and conducted studies with larger sample sizes, proper negative and positive controls and adequate case-control matching.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Adult , Body Mass Index , PubMed , Reproduction
4.
J Am Chem Soc ; 144(38): 17700-17708, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36112651

ABSTRACT

Conventional sandwich immunosensors rely on antibody recognition layers to selectively capture and detect target antigen analytes. However, the fabrication of these traditional affinity sensors is typically associated with lengthy and multistep surface modifications of electrodes and faces the challenge of nonspecific adsorption from complex sample matrices. Here, we report on a unique design of bioelectronic affinity sensors by using natural cell membranes as recognition layers for protein detection and prevention of biofouling. Specifically, we employ the human macrophage (MΦ) membrane together with the human red blood cell (RBC) membrane to coat electrochemical transducers through a one-step process. The natural protein receptors on the MΦ membrane are used to capture target antigens, while the RBC membrane effectively prevents nonspecific surface binding. In an attempt to detect tumor necrosis factor alpha (TNF-α) cytokine using the bioelectronic affinity sensor, it demonstrates a remarkable limit of detection of 150 pM. This new sensor design integrates natural cell membranes and electronic transduction, which offers synergistic functionalities toward a broad range of biosensing applications.


Subject(s)
Biosensing Techniques , Antigens , Cell Membrane , Electrochemical Techniques , Electrodes , Humans , Immunoassay , Tumor Necrosis Factor-alpha
5.
Anal Chem ; 94(26): 9217-9225, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35715001

ABSTRACT

Decentralized sensing of analytes in remote locations is today a reality. However, the number of measurable analytes remains limited, mainly due to the requirement for time-consuming successive standard additions calibration used to address matrix effects and resulting in greatly delayed results, along with more complex and costly operation. This is particularly challenging in commonly used immunoassays of key biomarkers that typically require from 60 to 90 min for quantitation based on two standard additions, hence hindering their implementation for rapid and routine diagnostic applications, such as decentralized point-of-care (POC) insulin testing. In this work we have developed and demonstrated the theoretical framework for establishing a universal slope for direct calibration-free POC insulin immunoassays in serum samples using an electrochemical biosensor (developed originally for extended calibration by standard additions). The universal slope is presented as an averaged slope constant, relying on 68 standard additions-based insulin determinations in human sera. This new quantitative analysis approach offers reliable sample measurement without successive standard additions, leading to a dramatically simplified and faster assay (30 min vs 90 min when using 2 standard additions) and greatly reduced costs, without compromising the analytical performance while significantly reducing the analyses costs. The substantial improvements associated with the new universal slope concept have been demonstrated successfully for calibration-free measurements of serum insulin in 30 samples from individuals with type 1 diabetes using meticulous statistical analysis, supporting the prospects of applying this immunoassay protocol to routine decentralized POC insulin testing.


Subject(s)
Biosensing Techniques , Insulin , Biomarkers/analysis , Humans , Immunoassay/methods , Point-of-Care Testing
6.
Reprod Biomed Online ; 43(3): 523-531, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34344601

ABSTRACT

RESEARCH QUESTION: The semen harbours a diverse range of microorganisms. The origin of the seminal microbes, however, has not yet been established. Do testicular spermatozoa harbour microbes and could they potentially contribute to the seminal microbiome composition? DESIGN: The study included 24 samples, comprising a total of 307 testicular maturing spermatozoa. A high-throughput sequencing method targeting V3 and V4 regions of 16S rRNA gene was applied. A series of negative controls together with stringent in-silico decontamination methods were analysed. RESULTS: Between 50 and 70% of all the detected bacterial reads accounted for contamination in the testicular sperm samples. After stringent decontamination, Blautia (P = 0.04), Cellulosibacter (P = 0.02), Clostridium XIVa (P = 0.01), Clostridium XIVb (P = 0.04), Clostridium XVIII (P = 0.02), Collinsella (P = 0.005), Prevotella (P = 0.04), Prolixibacter (P = 0.02), Robinsoniella (P = 0.04), and Wandonia (P = 0.04) genera demonstrated statistically significant abundance among immature spermatozoa. CONCLUSIONS: Our results indicate that the human testicle harbours potential bacterial signature, though in a low-biomass, and could contribute to the seminal microbiome composition. Further, applying stringent decontamination methods is crucial for analysing microbiome in low-biomass site.


Subject(s)
Microbiota/genetics , Spermatozoa/microbiology , Adult , Aged , Case-Control Studies , DNA Fragmentation , High-Throughput Nucleotide Sequencing , Humans , Infertility, Male/microbiology , Infertility, Male/pathology , Male , Middle Aged , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Semen Analysis/methods , Sequence Analysis, DNA/methods , Spermatozoa/chemistry , Spermatozoa/pathology , Testis/chemistry , Testis/microbiology , Testis/pathology
7.
Anal Chem ; 92(2): 2291-2300, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31874029

ABSTRACT

Diabetic ketoacidosis (DKA), a severe complication of diabetes mellitus with potentially fatal consequences, is characterized by hyperglycemia and metabolic acidosis due to the accumulation of ketone bodies, which requires people with diabetes to monitor both glucose and ketone bodies. However, despite major advances in diabetes management mainly since the emergence of new-generation continuous glucose monitoring (CGM) devices capable of in vivo monitoring of glucose directly in the interstitial fluid (ISF), the continuous monitoring of ketone bodies is yet to be addressed. Here, we present the first use of a real-time continuous ketone bodies monitoring (CKM) microneedle platform. The system is based on the electrochemical monitoring of ß-hydroxybutyrate (HB) as the dominant biomarker of ketone formation. Such real-time HB detection has been realized using the ß-hydroxybutyrate dehydrogenase (HBD) enzymatic reaction and by addressing the major challenges associated with the stable confinement of the enzyme/cofactor couple (HBD/NAD+) and with a stable and selective low-potential fouling-free anodic detection of NADH. The resulting CKM microneedle device displays an attractive analytical performance, with high sensitivity (with low detection limit, 50 µM), high selectivity in the presence of potential interferences, along with good stability during prolonged operation in artificial ISF. The potential applicability of this microneedle sensor toward minimally invasive monitoring of ketone bodies has been demonstrated in a phantom gel skin-mimicking model. The ability to detect HB along with glucose and lactate on a single microneedle array has been demonstrated. These findings pave the way for CKM and for the simultaneous microneedle-based monitoring of multiple diabetes-related biomarkers toward a tight glycemic control.


Subject(s)
Diabetic Ketoacidosis/diagnosis , Extracellular Fluid/chemistry , Glucose/analysis , Ketone Bodies/analysis , Ketosis/diagnosis , Lactic Acid/analysis , Biosensing Techniques , Blood Glucose Self-Monitoring , Electrochemical Techniques , Humans , Needles , Time Factors
8.
Reprod Biomed Online ; 40(2): 305-318, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31926826

ABSTRACT

RESEARCH QUESTION: Women with endometriosis are considered to be at higher risk of several chronic diseases, such as autoimmune disorders, gynaecological cancers, asthma/atopic diseases and cardiovascular and inflammatory bowel diseases. Could the study of endometriosis-associated comorbidities help to identify potential biomarkers and target pathways of endometriosis? DESIGN: A systematic review was performed to identify all possible endometriosis-associated comorbid conditions. Next, this list of disorders was coded into MeSH terms, and the gene expression profiles were downloaded from the Phenopedia database and subsequently analysed following a systems biology approach. RESULTS: The results identified a group of 127 candidate genes that were recurrently expressed in endometriosis and its closest comorbidities and that were defined as 'endometriosis sibling disorders' (ESD). The enrichment analysis showed that these candidate genes are principally involved in immune and drug responses, hormone metabolism and cell proliferation, which are well-known hallmarks of endometriosis. The expression of ESD genes was then validated on independent sample cohorts (n = 207 samples), in which the involvement of 16 genes (AGTR1, BDNF, C3, CCL2, CD40, CYP17A1, ESR1, IGF1, IGF2, IL10, MMP1, MMP7, MMP9, PGR, SERPINE1 and TIMP2) in endometriosis was confirmed. Several of these genes harbour polymorphisms that associate to either endometriosis or its comorbid conditions. CONCLUSIONS: The study results highlight the molecular processes underlying the aetiopathogenesis of endometriosis and its comorbid conditions, and identify putative endometriosis biomarkers.


Subject(s)
Autoimmune Diseases/genetics , Databases, Genetic , Endometriosis/genetics , Inflammatory Bowel Diseases/genetics , Autoimmune Diseases/epidemiology , Biomarkers , Cluster Analysis , Comorbidity , Endometriosis/epidemiology , Female , Humans , Inflammatory Bowel Diseases/epidemiology , Polymorphism, Genetic
9.
Angew Chem Int Ed Engl ; 58(19): 6376-6379, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30868724

ABSTRACT

Performing bioassay formats based on enzyme and antibody recognition reactions with a single detection chip remains an unmet challenge owing to the different requirements of such bioassays. Herein, we describe a dual-marker biosensor chip, integrating enzyme and antibody-based assays for simultaneous electrochemical measurements of insulin (I) and glucose (G). Simultaneous G/I sensing has been realized by addressing key fabrication and operational challenges associated with the different assay requirements and surface chemistry. The I immunosensor relies on a peroxidase-labeled sandwich immunoassay, while G is monitored through reaction with glucose oxidase. The dual diabetes biomarker chip offers selective and reproducible detection of picomolar I and millimolar G concentrations in a single microliter sample droplet within less than 30 min, including direct measurements in whole blood and saliva samples. The resulting integrated enzymatic-immunoassay biosensor chip opens a new realm in point-of-care multiplexed biomarker detection.


Subject(s)
Biomarkers/analysis , Glucose/analysis , Immunoassay/methods , Insulin/analysis , Biomarkers/blood , Electrochemical Techniques/methods , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans , Insulin/blood , Point-of-Care Systems , Saliva/metabolism
10.
Sensors (Basel) ; 18(3)2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543716

ABSTRACT

This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs). Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP)-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at -0.20 V (versus the Ag pseudo-reference electrode) was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD) of 0.2 nM (5 fmol in 25 µL of sample) for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt) extracted from breast cancer cells (MCF-7) were demonstrated.


Subject(s)
Biosensing Techniques , Electrodes , Horseradish Peroxidase , Humans , Magnetic Fields , MicroRNAs , Neoplasms , Nucleic Acid Hybridization
11.
Anal Chem ; 89(17): 9474-9482, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28746806

ABSTRACT

A novel electrochemical disposable nucleic acid biosensor for simple, rapid, and specific detection of adulterations with horsemeat is reported in this work. The biosensing platform involves immobilization of a 40-mer RNA probe specific for a characteristic fragment of the mitochondrial DNA D-loop region of horse onto the surface of magnetic microcarriers. In addition, signal amplification was accomplished by using a commercial antibody specific to RNA/DNA duplexes and a bacterial protein conjugated with a horseradish peroxidase homopolymer (ProtA-HRP40). Amperometric detection at -0.20 V vs Ag pseudoreference electrode was carried out at disposable screen-printed carbon electrodes. The methodology achieved a limit of detection (LOD) of 0.12 pM (3.0 attomoles) for the synthetic target and showed ability to discriminate between raw beef and horsemeat using just 50 ng of total extracted mitochondrial DNA (∼16 660 bp in length) without previous fragmentation. The biosensor also allowed discrimination between 100% raw beef and beef meat samples spiked with only 0.5% (w/w) horse meat (levels established by the European Commission) using raw mitochondrial lysates without DNA extraction or polymerase chain reaction (PCR) amplification in just 75 min. These interesting features made the developed methodology an extremely interesting tool for beef meat screening, and it can be easily adapted to the determination of other meat adulterations by selection of the appropriate specific fragments of the mitochondrial DNA region and capture probes.


Subject(s)
DNA, Mitochondrial/chemistry , Electrochemical Techniques/instrumentation , Meat/analysis , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Animals , Cattle , DNA, Mitochondrial/genetics , Disposable Equipment , Food Analysis , Horses , Polymerase Chain Reaction/instrumentation
12.
Int J Mol Sci ; 18(11)2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29120349

ABSTRACT

This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at -0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 µL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA-RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , MicroRNAs/analysis , Neoplasms/diagnosis , Antibodies, Antinuclear/chemistry , Carbon/chemistry , DNA, Complementary/chemistry , Electrodes , Humans , Limit of Detection , MCF-7 Cells , MicroRNAs/chemistry , Nucleic Acid Hybridization/methods , Sensitivity and Specificity , Time Factors
13.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927658

ABSTRACT

Uterine pathologies pose a challenge to women's health on a global scale. Despite extensive research, the causes and origin of some of these common disorders are not well defined yet. This study presents a comprehensive analysis of transcriptome data from diverse datasets encompassing relevant uterine pathologies such as endometriosis, endometrial cancer and uterine leiomyomas. Leveraging the Comparative Analysis of Shapley values (CASh) technique, we demonstrate its efficacy in improving the outcomes of the classical differential expression analysis on transcriptomic data derived from microarray experiments. CASh integrates the microarray game algorithm with Bootstrap resampling, offering a robust statistical framework to mitigate the impact of potential outliers in the expression data. Our findings unveil novel insights into the molecular signatures underlying these gynecological disorders, highlighting CASh as a valuable tool for enhancing the precision of transcriptomics analyses in complex biological contexts. This research contributes to a deeper understanding of gene expression patterns and potential biomarkers associated with these pathologies, offering implications for future diagnostic and therapeutic strategies.


Subject(s)
Endometriosis , Gene Expression Profiling , Leiomyoma , Transcriptome , Female , Humans , Transcriptome/genetics , Endometriosis/genetics , Endometriosis/pathology , Leiomyoma/genetics , Leiomyoma/pathology , Gene Expression Profiling/methods , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Diseases/genetics , Uterine Diseases/pathology , Algorithms
14.
Nat Rev Endocrinol ; 19(8): 487-495, 2023 08.
Article in English | MEDLINE | ID: mdl-37217746

ABSTRACT

Tremendous progress has been made towards achieving tight glycaemic control in individuals with diabetes mellitus through the use of frequent or continuous glucose measurements. However, in patients who require insulin, accurate dosing must consider multiple factors that affect insulin sensitivity and modulate insulin bolus needs. Accordingly, an urgent need exists for frequent and real-time insulin measurements to closely track the dynamic blood concentration of insulin during insulin therapy and guide optimal insulin dosing. Nevertheless, traditional centralized insulin testing cannot offer timely measurements, which are essential to achieving this goal. This Perspective discusses the advances and challenges in moving insulin assays from traditional laboratory-based assays to frequent and continuous measurements in decentralized (point-of-care and home) settings. Technologies that hold promise for insulin testing using disposable test strips, mobile systems and wearable real-time insulin-sensing devices are discussed. We also consider future prospects for continuous insulin monitoring and for fully integrated multisensor-guided closed-loop artificial pancreas systems.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Resistance , Pancreas, Artificial , Humans , Insulin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose , Insulin Infusion Systems , Blood Glucose Self-Monitoring , Hypoglycemic Agents/therapeutic use
15.
ACS Sens ; 8(10): 3892-3901, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37734056

ABSTRACT

While paper-based lateral-flow immunoassays (LFA) offer considerable promise for centralized diagnostic applications, the analytical capability of conventional LFA remains constrained due to the low sensitivity of its common optical detection strategy. To address these issues, we report a simple electrochemical LFA (eLFA) with nanocatalytic redox cycling for decentralized insulin detection. Simultaneous binding of insulin with detection antibodies and capture antibodies through the capillary flow at the LFA platform and signal amplification through the rapid nanocatalytic reduction of [Fe(CN)6]3- (Fe3+) with Au nanoparticles (AuNP) and ammonia-borane (AB), coupled to electrochemical redox cycling reactions involving Fe3+, AuNP, and AB on the carbon working electrode, offer higher sensitivity than conventional colorimetric LFA and enzymatic redox cycling. The resulting integrated eLFA strip allows the detection of low insulin concentrations (LOD = 12 pM) and offers considerable promise for highly sensitive decentralized assays of different biological fluids (saliva and serum) without additional pretreatment or washing steps.


Subject(s)
Insulin , Metal Nanoparticles , Gold , Immunoassay/methods , Insulin, Regular, Human , Oxidation-Reduction
16.
Semin Reprod Med ; 41(5): 200-208, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38262442

ABSTRACT

The female lower reproductive tract microbiota is a complex ecosystem comprising various microorganisms that play a pivotal role in maintaining women's reproductive well-being. During pregnancy, the vaginal microbiota undergoes dynamic changes that are important for a successful gestation. This review summarizes the implications of the cervical mucus plug microenvironment and its profound impact on reproductive health. Further, the symbiotic relationship between the vaginal microbiome and the cervical mucus plug is highlighted, with a special emphasis on how this natural barrier serves as a guardian against ascending infections. Understanding this complex host-microbes interplay could pave the way for innovative approaches to improve women's reproductive health and fertility.


Subject(s)
Cervix Mucus , Ecosystem , Pregnancy , Female , Humans , Reproduction , Vagina , Women's Health
17.
J Diabetes Sci Technol ; 17(4): 1029-1037, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35043720

ABSTRACT

BACKGROUND: Clinical decision support systems that incorporate information from frequent insulin measurements to enhance individualized diabetes management remain an unmet goal. The development of a disposable insulin strip for fast decentralized point-of-care detection replacing the current centralized lab-based methods used in clinical practice would be highly desirable to improve the establishment of individual insulin absorption patterns and algorithm modeling processes. METHODS: We carried out the development and optimization of a novel decentralized disposable insulin electrochemical sensor focusing on obtaining high analytical and operational performance toward achieving a true point-of-care insulin testing device for clinical on-site application. RESULTS: Our novel insulin immunosensor demonstrated an attractive performance and efficient user-friendly operation by providing high sensitivity capability to detect endogenous and analog insulin with a limit of detection of 30.2 pM (4.3 µiU/mL), rapid time-to-result, stability toward remote site application, and scalable low-cost fabrication with an estimated cost-of-goods for disposable consumables of below $5, capable of near real-time insulin detection in a microliter (≤10 µL) sample droplet of undiluted serum within 30 minutes. CONCLUSIONS: The results obtained in the optimization and characterization of our novel insulin sensor illustrate its suitability for its potential application in remote clinical environments for frequent insulin monitoring. Future work will test the insulin sensor in a clinical research setting to assess its efficacy in individuals with type 1 diabetes.


Subject(s)
Biosensing Techniques , Insulin , Humans , Biosensing Techniques/methods , Immunoassay/methods , Insulin, Regular, Human , Clinical Decision-Making
18.
J Diabetes Sci Technol ; 17(4): 1038-1048, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35118893

ABSTRACT

BACKGROUND: The estimation of available active insulin remains a limitation of automated insulin delivery systems. Currently, insulin pumps calculate active insulin using mathematical decay curves, while quantitative measurements of insulin would explicitly provide person-specific PK insulin dynamics to assess remaining active insulin more accurately, permitting more effective glucose control. METHODS: We performed the first clinical evaluation of an insulin immunosensor chip, providing near real-time measurements of insulin levels. In this study, we sought to determine the accuracy of the novel insulin sensor and assess its therapeutic risk and benefit by presenting a new tool developed to indicate the potential therapeutic consequences arising from inaccurate insulin measurements. RESULTS: Nine adult participants with type-1 diabetes completed the study. The change from baseline in immunosensor-measured insulin levels was compared with values obtained by standard enzyme-linked immunosorbant assay (ELISA) after preprandial injection of insulin. The point-of-care quantification of insulin levels revealed similar temporal trends as those from the laboratory insulin ELISA. The results showed that 70% of the paired immunosensor-reference values were concordant, which suggests that the patient could take action safely based on insulin concentration obtained by the novel sensor. CONCLUSIONS: This proposed technology and preliminary feasibility evaluation show encouraging results for near real-time evaluation of insulin levels, with the potential to improve diabetes management. Real-time measurements of insulin provide person-specific insulin dynamics that could be used to make more informed decisions regarding insulin dosing, thus helping to prevent hypoglycemia and improve diabetes outcomes.


Subject(s)
Biosensing Techniques , Diabetes Mellitus, Type 1 , Adult , Humans , Insulin , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Immunoassay , Diabetes Mellitus, Type 1/drug therapy , Insulin, Regular, Human/therapeutic use
19.
Sci Rep ; 13(1): 14295, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652965

ABSTRACT

The PHQ-9 questionnaire is a screening test worldwide used to measure depression. But it cannot be used in Costa Rica, due to the fact that it has not previously been validated for its population. The present study aims to show the validation of the PHQ-9 questionnaire and its variants (PHQ-2, PHQ-4, PHQ-8) in a population sample of adults residing in Costa Rica. A sample was collected (n = 1162) using a self-administered questionnaire. Confirmatory Factor Analysis (CFA), Receiver Operating Characteristic (ROC) curve, and Multiple Group Confirmatory Factor Analysis (MGCFA) were tested. One factor was found that explained 73.33% of the variance with excellent internal consistency (α = 0.928). Goodness-of-fit measures were adequate (RMSEA = 0.107; CFI = 0.948), as was diagnostic power at a cut-off of 10 (78.60 for Sensitivity and 27.95 for 1-Specificity). External validation indices were good (r = 0.843 with GAD-7, r = - 0.647 with RS14, and r = 0.301 with FCV19S), and the model showed invariance by sex (∆χ2 = 27.90; df = 27; p < 0.001). Additionally, new cut-off points were proposed for PHQ-9 and its variants for Costa Rican male, female, and general populations. The PHQ-9 and its variants (PHQ-2, 4, and 8) are valid tools for detecting depression (and anxiety for PHQ-4) in Costa Rican population. In addition, new cut-off points differentiated by sex are proposed.


Subject(s)
Anxiety , Patient Health Questionnaire , Humans , Female , Male , Costa Rica , Anxiety Disorders , Factor Analysis, Statistical
20.
Hum Reprod Open ; 2022(4): hoac043, 2022.
Article in English | MEDLINE | ID: mdl-36339249

ABSTRACT

STUDY QUESTION: Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER: A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY: The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION: Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS: Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA: RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION: Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS: The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS: This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.

SELECTION OF CITATIONS
SEARCH DETAIL