Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bioorg Med Chem ; 23(17): 5725-33, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26233797

ABSTRACT

The canonical Wnt signaling pathway plays a fundamental role in embryonic as well as in adult development. Consequently, dysregulation of the pathway has been linked to a wide spectrum of pathological conditions. In a program aimed at the identification of small molecule inhibitors of the canonical Wnt pathway we identified a series of 2-aminopyrimidine derivatives which specifically inhibited the pathway with minimal or no sign of cellular toxicity. The hit molecules 1 and 2 showed promising inhibitory activity with IC50 values of approximately 10 µM, but low solubility and metabolic stability. During the early stage of the hit series exploration, the pyrimidine core was variously decorated to obtain active compounds with a better physico-chemical profile. In particular, compound 13 showed Wnt inhibition activity comparable to hit molecules 1 and 2, with improved physico-chemical properties. Therefore, this series of compounds may be considered a promising starting point for the design of novel small molecule inhibitors of the canonical Wnt pathway.


Subject(s)
Pyrimidines/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Humans , Molecular Structure , Pyrimidines/metabolism , Structure-Activity Relationship , Wnt Signaling Pathway/genetics
2.
Bioorg Med Chem ; 17(14): 5247-58, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19515567

ABSTRACT

Alpha 7 nicotinic acetylcholine receptor (alpha(7) nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment associated with a variety of disorders including Alzheimer's disease and schizophrenia. Alpha 7 nAChRs are expressed in brain regions associated with cognitive function, regulate cholinergic neurotransmission and have been shown to be down regulated in both schizophrenia and Alzheimer's disease. Herein we report a novel, potent small molecule agonist of the alpha 7 nAChR, SEN12333/WAY-317538. This compound is a selective agonist of the alpha(7) nAChR with excellent in vitro and in vivo profiles, excellent brain penetration and oral bioavailability, and demonstrates in vivo efficacy in multiple behavioural cognition models. The SAR and biological evaluation of this series of compounds are discussed.


Subject(s)
Morpholines/chemistry , Morpholines/pharmacology , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Alzheimer Disease/drug therapy , Animals , Binding, Competitive , Calcium/metabolism , Cell Line , Cognition/drug effects , Electrophysiology , Humans , Morpholines/pharmacokinetics , Nicotinic Agonists/pharmacokinetics , Pyridines/pharmacokinetics , Rats , Rats, Wistar , Schizophrenia/drug therapy , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
3.
Bioorg Med Chem ; 17(16): 5834-56, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19620011

ABSTRACT

Novel proapoptotic Smac mimics/IAPs inhibitors have been designed, synthesized and characterized. Computational models and structural studies (crystallography, NMR) have elucidated the SAR of this class of inhibitors, and have permitted further optimization of their properties. In vitro characterization (XIAP BIR3 and linker-BIR2-BIR3 binding, cytotox assays, early ADMET profiling) of the compounds has been performed, identifying one lead for further in vitro and in vivo evaluation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Mitochondrial Proteins/chemistry , Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Apoptosis Regulatory Proteins , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/toxicity , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism
4.
Eur J Med Chem ; 95: 526-45, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25847770

ABSTRACT

Wnt signaling pathway plays a critical role in numerous cellular processes, including tumor initiation, proliferation, invasion/infiltration, metastasis formation and resistance to chemotherapy. In a drug discovery project aimed at the identification of inhibitors of the canonical Wnt pathway, we selected a series of quinazoline 2,4-diones as starting point for the therapeutic treatment of glioblastoma multiforme. Despite of poor physico-chemical properties of hit compound 1, our medicinal chemistry effort allowed the discovery and characterization of lead compound 33 (SEN461), with improved ADME profile, good bioavailability and active in vitro and in vivo in glioblastoma, gastric and sarcoma tumors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Inhibitory Concentration 50 , Male , Mice , Quinazolines/metabolism , Quinazolines/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
PLoS One ; 9(5): e97847, 2014.
Article in English | MEDLINE | ID: mdl-24842792

ABSTRACT

Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.


Subject(s)
Antineoplastic Agents/pharmacology , Axin Protein/metabolism , Sarcoma/physiopathology , Wnt Signaling Pathway/physiology , Animals , Cell Line, Tumor , DNA Primers/genetics , Female , Fluorescent Antibody Technique , Genetic Vectors/genetics , Humans , Immunoblotting , Lentivirus , Mice , Mice, Nude , Microscopy, Confocal , Plasmids/genetics , Protein Stability/drug effects , Real-Time Polymerase Chain Reaction , Sarcoma/drug therapy
6.
Mol Cancer Ther ; 12(7): 1180-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23619303

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and prognostically unfavorable form of brain tumor. The aggressive and highly invasive phenotype of these tumors makes them among the most anatomically damaging human cancers with a median survival of less than 1 year. Although canonical Wnt pathway activation in cancers has been historically linked to the presence of mutations involving key components of the pathway (APC, ß-catenin, or Axin proteins), an increasing number of studies suggest that elevated Wnt signaling in GBM is initiated by several alternative mechanisms that are involved in different steps of the disease. Therefore, inhibition of Wnt signaling may represent a therapeutically relevant approach for GBM treatment. After the selection of a GBM cell model responsive to Wnt inhibition, we set out to develop a screening approach for the identification of compounds capable of modulating canonical Wnt signaling and associated proliferative responses in GBM cells. Here, we show that the small molecule SEN461 inhibits the canonical Wnt signaling pathway in GBM cells, with relevant effects at both molecular and phenotypic levels in vitro and in vivo. These include SEN461-induced Axin stabilization, increased ß-catenin phosphorylation/degradation, and inhibition of anchorage-independent growth of human GBM cell lines and patient-derived primary tumor cells in vitro. Moreover, in vivo administration of SEN461 antagonized Wnt signaling in Xenopus embryos and reduced tumor growth in a GBM xenograft model. These data represent the first demonstration that small-molecule-mediated inhibition of Wnt signaling may be a potential approach for GBM therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Wnt Signaling Pathway/drug effects , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Glioblastoma/pathology , HEK293 Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mice , Mice, Nude , Prognosis , Signal Transduction , Transfection , Xenograft Model Antitumor Assays , Xenopus
7.
ACS Med Chem Lett ; 3(7): 535-9, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-24900506

ABSTRACT

This study demonstrated that cyclomethyline (2) and the corresponding enantiomers (R)-(-)-2 and (S)-(+)-2, displaying α2C-adrenoreceptor (AR) agonism/α2A-AR antagonism, similarly to allyphenyline (1) and its enantiomers, significantly decreased the naloxone-precipitated withdrawal symptoms in mice at very low doses. It also highlighted that such positive effects on morphine dependence can even be improved by additional serotoninergic 5-HT1A receptor (5-HT1A-R) activation. Indeed, 1 or the single (S)-(+)-1, 2, or both its enantiomers, all behaving as α2C-AR agonists/α2A-AR antagonists/5-HT1A-R agonists, alone and at the same low dose, improved morphine withdrawal syndrome and exerted a potent antidepressant-like effect. Therefore, considering the elevated comorbidity between opiate abuse and depressed mood and the benefit of these multifunctional compounds to both disorders, it is possible that they prove more efficacious and less toxic than a cocktail of drugs in managing opioid addiction.

8.
J Med Chem ; 53(11): 4379-89, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20465311

ABSTRACT

Alpha-7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment. We report a series of novel, potent small molecule agonists (4-18) of the alpha7 nAChR deriving from our continuing efforts in the areas of Alzheimer's disease and schizophrenia. One of the compounds of the series containing a urea moiety (16) was further shown to be a selective agonist of the alpha7 nAChR with excellent in vitro and in vivo profiles, brain penetration, and oral bioavailability and demonstrated in vivo efficacy in multiple behavioral cognition models. Structural modifications leading to the improved selectivity profile and the biological evaluation of this series of compounds are discussed.


Subject(s)
Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Humans , Inhibitory Concentration 50 , Male , Models, Molecular , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacokinetics , Protein Conformation , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Receptors, Nicotinic/chemistry , Structure-Activity Relationship , Substrate Specificity , Urea/administration & dosage , Urea/pharmacokinetics , alpha7 Nicotinic Acetylcholine Receptor
9.
Dalton Trans ; (20): 3321-30, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15483717

ABSTRACT

The series of N-carbazolyl phosphines PPh(3-n)(NC(12)H(8))(n)(n= 1, L1; n= 2, L2; n= 3, L3) has been synthesised using BuLi to generate the N-carbazolyl lithium salt, followed by reaction with the appropriate chlorophosphine. The reactions between [Rh(mu-Cl)(CO)(2)](2) and four equivalents of L1 or L2 gave [RhCl(CO)(L1)(2)] 1 and [RhCl(CO)(L2)(2)] 2, though attempts to synthesise the analogous complex using L3 resulted in the formation of [Rh(mu-Cl)(CO)(L3)](2) 3 instead. The inability of L3 to cleave the chloride bridges can be related to its considerable steric requirements. The electronic properties of L1-3 were assessed by comparison of the nu(CO) values of the [Rh(acac)(CO)(L1-3)] complexes 4-6. The increase in number of N-carbazolyl substituents at the phosphorus atom results in a decrease of the sigma-donor and increase in the pi-acceptor character in the order L1 < L2 < L3. In the reactions of L1-3 with [PdCl(2)(cod)] only L1 was able to displace cod from the metal centre and form [PdCl(2)(L1)(2)] 7. The use of [PdCl(2)(NCMe)(2)] instead of [PdCl(2)(cod)] resulted in the formation of the complexes [PdCl(2)(L1)(2)] 7 from L1, the cyclometallated complex [Pd(mu-Cl)[P(NC(12)H(8))(2)(NC(12)H(7))-kappa(2)P,C]](2) 8 from L3 , and a mixture of [PdCl(2)(L2)(2)] 9 and [Pd(mu-Cl)[PPh(NC(12)H(8))(NC(12)H(7))-kappa(2)P,C]](2) 10 from L2 . The reaction of L3 with [Pd(OAc)(2)] produced the cyclometallated complex [Pd(mu-O(2)CCH(3))[P(NC(12)H(8))(2)(NC(12)H(7))-kappa(2)P,C]](2) 11. The reaction of L3 with [Pd(2)(dba)(3)].CHCl(3) produced the 14-electron complex [Pd(L3)(2)] 12. The X-ray crystal structures of six complexes are reported, all of which show the presence of C-H...Pd hydrogen bonding.

10.
Acta Crystallogr C ; 58(Pt 11): o649-51, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12415170

ABSTRACT

Two compounds containing 1,3-benzodioxin groups are reported, namely (+/-)-6-tert-butyl-8-hydroxymethyl-2-phenyl-4H-1,3-benzodioxin, C(19)H(22)O(3), (I), and 2,2,2',2',6,6'-hexamethyl-8,8'-methylenebis(4H-1,3-benzodioxin), C(23)H(28)O(4), (II). The hydroxy groups of neighbouring molecules in (I) are hydrogen bonded to each other, giving rise to double-row chains. The molecule in (II) adopts a 'butterfly' conformation, with the O atoms in distal positions. In both compounds, the dioxin rings are in distorted half-chair conformations.

11.
Inorg Chem ; 42(22): 7227-38, 2003 Nov 03.
Article in English | MEDLINE | ID: mdl-14577792

ABSTRACT

The unsymmetrical diphosphinomethane ligand Ph(2)PCH(2)P(NC(4)H(4))(2) L has been prepared from the reaction of Ph(2)PCH(2)Li with PCl(NC(4)H(4))(2). The diphenylphosphino group can be selectively oxidized with sulfur to give Ph(2)P(S)CH(2)P(NC(4)H(4))(2) 1. The reaction of L with [MCl(2)(cod)] (M = Pd, Pt) gives the chelate complexes [MCl(2)(L-kappa(2)P,P')] (2, M = Pd; 3, M = Pt) in which the M-P bond to the di(N-pyrrolyl)phosphino group is shorter than that to the corresponding diphenylphosphino group. However, the shorter Pd-P bond is cleaved on reaction of 2 with an additional 1 equiv of L to give [PdCl(2)(L-kappa(1)P)(2)] 4. Complex 4 reacts with [PdCl(2)(cod)] to regenerate 2, and with [Pd(2)(dba)(3)].CHCl(3) to give the palladium(I) dimer [Pd(2)Cl(2)(mu-L)(2)] 5, which exists in solution and the solid state as a 1:1 mixture of head-to-head (HH) and head-to-tail (HT) isomers. The palladium(II) dimer [Pd(2)Cl(2)(CH(3))(2)(mu-L)(2)] 6, formed by the reaction of [PdCl(CH(3))(cod)] with L, also exists in solution as a mixture of HH and HT isomers, although in this case the HT isomer prevails at low temperature and crystallizes preferentially. Complex 6 reacts with TlPF(6) to give the A-frame complex [Pd(2)(CH(3))(2)(mu-Cl)(mu-L)(2)]PF(6) 7. The reaction of L with [RuCp*(mu(3)-Cl)](4) leads to the dimer [Ru(2)Cp*(2)(mu-Cl)(2)(mu-L)] 8, for which the enthalpy of reaction has been measured. The reaction of L with [Rh(mu-Cl)(cod)](2) gives a mixture of compounds from which the dimer [Rh(2)(mu-Cl)(cod)(2)(mu-L)]PF(6) 9 can be isolated. The crystal structures of 2.CHCl(3), 3.CH(2)Cl(2), 4, 5.(1)/(4)CH(2)Cl(2), 6, 7.2CH(2)Cl(2), 8, and 9.CH(2)Cl(2) are reported.

12.
Inorg Chem ; 41(7): 1695-7, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11925157

ABSTRACT

Rhodium(I) complexes trans-[RhCl(CO)(PR(2)[NC(4)H(3)C(O)Me-2])(2)] (R = Ph, NC(4)H(4)) react with water to give the diphosphoxane-bridged dimers [Rh(2)Cl(2)(CO)(2)(mu-PR(2)OPR(2))(2)] following cleavage of the P-N bonds to the 2-acetyl-N-pyrrolyl groups. The two dimers have been crystallographically characterized and show a number of structural differences, with the PPh(2)OPPh(2) compound possessing semibridging chloride and carbonyl ligands whereas the P(NC(4)H(4))(2)OP(NC(4)H(4))(2) compound contains only terminal chlorides and carbonyls. No evidence for cleavage of the P-N bonds involving the unfunctionalized N-pyrrolyl groups in trans-[RhCl(CO)(P[NC(4)H(4)](2)[NC(4)H(3)C(O)Me-2])(2)] was observed.

SELECTION OF CITATIONS
SEARCH DETAIL