Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nature ; 624(7992): 621-629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049589

ABSTRACT

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Genetic Predisposition to Disease , Islets of Langerhans , Humans , Case-Control Studies , Cell Separation , Chromatin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Insulin Secretion , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Reproducibility of Results
2.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693378

ABSTRACT

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Subject(s)
Diabetes Mellitus, Type 2 , Proinsulin , Humans , Proinsulin/genetics , Proinsulin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study/methods , Insulin/genetics , Insulin/metabolism , Glucose , Transcription Factors/genetics , Homeodomain Proteins/genetics
3.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34815310

ABSTRACT

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

4.
Proc Natl Acad Sci U S A ; 114(9): 2301-2306, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193859

ABSTRACT

Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome, Human , Islets of Langerhans/metabolism , Quantitative Trait Loci , Transcriptome , Alleles , Base Sequence , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Epigenesis, Genetic , Gene Expression Profiling , Genetic Variation , Genome-Wide Association Study , Genomic Imprinting , Humans , Islets of Langerhans/pathology , Polymorphism, Single Nucleotide , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism
5.
BMC Genomics ; 19(1): 390, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29792182

ABSTRACT

BACKGROUND: Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; however, the data suffer from biases due to coverage depth variability. Imputation of methylation values at low-coverage sites may mitigate these biases while also identifying important genomic features associated with predictive power. RESULTS: Here we describe BoostMe, a method for imputing low-quality DNA methylation estimates within whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting algorithm, XGBoost, and leverages information from multiple samples for prediction. We find that BoostMe outperforms existing algorithms in speed and accuracy when applied to WGBS of human tissues. Furthermore, we show that imputation improves concordance between WGBS and the MethylationEPIC array at low WGBS depth, suggesting improved WGBS accuracy after imputation. CONCLUSIONS: Our findings support the use of BoostMe as a preprocessing step for WGBS analysis.


Subject(s)
Computational Biology/methods , DNA Methylation/drug effects , Sulfites/pharmacology , Whole Genome Sequencing , Algorithms , High-Throughput Nucleotide Sequencing , Humans
6.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873175

ABSTRACT

Recent genome-wide association studies have established that most complex disease-associated loci are found in noncoding regions where defining their function is nontrivial. In this study, we leverage a modular massively parallel reporter assay (MPRA) to uncover sequence features linked to context-specific regulatory activity. We screened enhancer activity across a panel of 198-bp fragments spanning over 10k type 2 diabetes- and metabolic trait-associated variants in the 832/13 rat insulinoma cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up-or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin gene ( INS ). We identified clear effects of MPRA construct design on measured fragment enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. A separate set of fragments exhibited promoter bias (n = 698/11,656), mostly towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory variants. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.

7.
Res Sq ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37886586

ABSTRACT

Genome wide association studies (GWAS) have identified over 100 signals associated with type 1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, including putative causal variants and the context (cell type and cell state) in which they function, has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-resolution contexts, including effector cell types, regulatory elements, and genes for three independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ hESCs. Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, increased ß cell apoptosis. Additionally, pancreatic ß cells derived from isogenic hESCs carrying the risk allele of rs3783355A/A exhibited increased ß cell death. Finally, RNA-seq and ATAC-seq identified five genes upregulated in both RASGRP1-/- and DLK1-/- ß-like cells, four of which are associated with T1D. Together, this work reports an integrative approach for combining single cell multi-omics, GWAS, and isogenic hESC-derived ß-like cells to prioritize the T1D associated signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to illuminate biological functions and molecular mechanisms.

8.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168419

ABSTRACT

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

9.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Article in English | MEDLINE | ID: mdl-37386251

ABSTRACT

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Subject(s)
Facial Paralysis , Animals , Mice , Facial Paralysis/genetics , Facial Paralysis/congenital , Facial Paralysis/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Motor Neurons/metabolism , Neurogenesis , Neurons, Efferent
10.
Commun Biol ; 5(1): 756, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902682

ABSTRACT

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.


Subject(s)
Diabetes Mellitus, Type 2 , Fasting , Diabetes Mellitus, Type 2/genetics , Glucose , Humans , Insulin/genetics , National Heart, Lung, and Blood Institute (U.S.) , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Precision Medicine , Receptors, Immunologic/genetics , United States
11.
Nat Commun ; 12(1): 1307, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637709

ABSTRACT

Interactions between transcription factors and chromatin are fundamental to genome organization and regulation and, ultimately, cell state. Here, we use information theory to measure signatures of organized chromatin resulting from transcription factor-chromatin interactions encoded in the patterns of the accessible genome, which we term chromatin information enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human samples and identify two classes: low and high CIE. The 10-20% of common and tissue-specific high CIE transcription factor motifs, associate with higher protein-DNA residence time, including different binding site subclasses of the same transcription factor, increased nucleosome phasing, specific protein domains, and the genetic control of both chromatin accessibility and gene expression. These results show that variations in the information encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.


Subject(s)
Chromatin/metabolism , DNA/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Binding Sites , Cell Line , DNA-Binding Proteins , Gene Expression Regulation , Hep G2 Cells , Humans , Nucleosomes
12.
Diabetes ; 70(7): 1581-1591, 2021 07.
Article in English | MEDLINE | ID: mdl-33849996

ABSTRACT

Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ∼20% of which are islet specific and occur mostly distal to known gene TSS. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (∼68%) tested islet CAGE elements (5% false discovery rate). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.


Subject(s)
Islets of Langerhans/physiology , Transcription Initiation Site , Enhancer Elements, Genetic , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
Nat Genet ; 53(6): 840-860, 2021 06.
Article in English | MEDLINE | ID: mdl-34059833

ABSTRACT

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Subject(s)
Blood Glucose/genetics , Quantitative Trait, Heritable , White People/genetics , Alleles , Epigenesis, Genetic , Gene Expression Profiling , Genome, Human , Genome-Wide Association Study , Glycated Hemoglobin/metabolism , Humans , Multifactorial Inheritance/genetics , Physical Chromosome Mapping , Quantitative Trait Loci/genetics
14.
Nat Commun ; 11(1): 4912, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999275

ABSTRACT

Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.


Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Islets of Langerhans/metabolism , Quantitative Trait Loci , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Blood Glucose/metabolism , Cell Line, Tumor , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation , Genome-Wide Association Study , Humans , Male , Mice , Middle Aged , Polymorphism, Single Nucleotide , RNA-Seq , Sequence Analysis, DNA , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Young Adult
15.
Genetics ; 211(2): 549-562, 2019 02.
Article in English | MEDLINE | ID: mdl-30593493

ABSTRACT

Epigenomic signatures from histone marks and transcription factor (TF)-binding sites have been used to annotate putative gene regulatory regions. However, a direct comparison of these diverse annotations is missing, and it is unclear how genetic variation within these annotations affects gene expression. Here, we compare five widely used annotations of active regulatory elements that represent high densities of one or more relevant epigenomic marks-"super" and "typical" (nonsuper) enhancers, stretch enhancers, high-occupancy target (HOT) regions, and broad domains-across the four matched human cell types for which they are available. We observe that stretch and super enhancers cover cell type-specific enhancer "chromatin states," whereas HOT regions and broad domains comprise more ubiquitous promoter states. Expression quantitative trait loci (eQTL) in stretch enhancers have significantly smaller effect sizes compared to those in HOT regions. Strikingly, chromatin accessibility QTL in stretch enhancers have significantly larger effect sizes compared to those in HOT regions. These observations suggest that stretch enhancers could harbor genetically primed chromatin to enable changes in TF binding, possibly to drive cell type-specific responses to environmental stimuli. Our results suggest that current eQTL studies are relatively underpowered or could lack the appropriate environmental context to detect genetic effects in the most cell type-specific "regulatory annotations," which likely contributes to infrequent colocalization of eQTL with genome-wide association study signals.


Subject(s)
Enhancer Elements, Genetic , Quantitative Trait Loci , Transcriptional Activation , Chromatin/genetics , Chromatin/metabolism , Embryonic Stem Cells/metabolism , Hep G2 Cells , Humans , Organ Specificity , Transcription Factors/metabolism
16.
Cell Rep ; 26(3): 788-801.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30650367

ABSTRACT

EndoC-ßH1 is emerging as a critical human ß cell model to study the genetic and environmental etiologies of ß cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-ßH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) ß cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or ß cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-ßH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing ß cell identity and (dys)function in diabetes.


Subject(s)
Gene Regulatory Networks/genetics , Insulin-Secreting Cells/metabolism , Cell Line , Humans
17.
PLoS One ; 13(4): e0195788, 2018.
Article in English | MEDLINE | ID: mdl-29659628

ABSTRACT

From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.


Subject(s)
Cellular Microenvironment , Gene Expression Regulation , Gene-Environment Interaction , Genetic Variation , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Energy Metabolism , Genetic Association Studies , Genotype , Humans , Muscle, Skeletal/cytology , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
18.
Adv Drug Deliv Rev ; 120: 50-70, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28734899

ABSTRACT

A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)-based materials to build versatile cell-instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration.


Subject(s)
Guided Tissue Regeneration/methods , Stem Cells/physiology , Animals , Bone Regeneration , Chemotactic Factors/physiology , Humans , Stem Cells/metabolism
19.
Diabetes ; 66(9): 2521-2530, 2017 09.
Article in English | MEDLINE | ID: mdl-28684635

ABSTRACT

Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic ß-cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent ß-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion.


Subject(s)
Adenylyl Cyclases/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation/physiology , Genetic Variation , Genome-Wide Association Study , Islets of Langerhans/metabolism , Adenylyl Cyclases/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Insulin/metabolism , Insulin Secretion
20.
Genes (Basel) ; 6(4): 1183-200, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26569311

ABSTRACT

Recently, unique areas of transcriptional regulation termed super-enhancers have been identified and implicated in human disease. Defined by their magnitude of size, transcription factor density, and binding of transcriptional machinery, super-enhancers have been associated with genes driving cell differentiation. While their functions are not completely understood, it is clear that these regions driving high-level transcription are susceptible to perturbation, and trait-associated single nucleotide polymorphisms (SNPs) occur within super-enhancers of disease-relevant cell types. Here we review evidence for super-enhancer involvement in cancers, complex diseases, and developmental disorders and discuss interactions between super-enhancers and cofactors/chromatin regulators.

SELECTION OF CITATIONS
SEARCH DETAIL