Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Publication year range
1.
Immunity ; 56(3): 653-668.e5, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36804957

ABSTRACT

Upon infection, HIV disseminates throughout the human body within 1-2 weeks. However, its early cellular targets remain poorly characterized. We used a single-cell approach to retrieve the phenotype and TCR sequence of infected cells in blood and lymphoid tissue from individuals at the earliest stages of HIV infection. HIV initially targeted a few proliferating memory CD4+ T cells displaying high surface expression of CCR5. The phenotype of productively infected cells differed by Fiebig stage and between blood and lymph nodes. The TCR repertoire of productively infected cells was heavily biased, with preferential infection of previously expanded and disseminated clones, but composed almost exclusively of unique clonotypes, indicating that they were the product of independent infection events. Latent genetically intact proviruses were already archived early in infection. Hence, productive infection is initially established in a pool of phenotypically and clonotypically distinct T cells, and latently infected cells are generated simultaneously.


Subject(s)
HIV Infections , HIV-1 , Latent Infection , Humans , CD4-Positive T-Lymphocytes/metabolism , HIV-1/genetics , Latent Infection/metabolism , Latent Infection/pathology , Receptors, Antigen, T-Cell/metabolism , Virus Latency
2.
J Immunol ; 212(10): 1553-1563, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38558245

ABSTRACT

HIV is associated with NK cell dysfunction and expansion of adaptive-like NK cells that persist despite antiretroviral therapy (ART). We investigated the timing of NK cell perturbations during acute HIV infection and the impact of early ART initiation. PBMCs and plasma were obtained from people with HIV (PWH; all men who have sex with men; median age, 26.0 y) diagnosed during Fiebig stages I, II, III, or IV/V. Participants initiated ART a median of 3 d after diagnosis, and immunophenotyping was performed at diagnosis and longitudinally after ART. Anti-CMV Abs were assessed by ELISA. Samples from matched HIV-uninfected males were also analyzed. Proportions of adaptive NK cells (A-NKs; defined as Fcε-Receptor-1γ-) were expanded at HIV diagnosis at all Fiebig stages (pooled median 66% versus 25% for controls; p < 0.001) and were not altered by early ART initiation. Abs to CMV immediate early protein were elevated in PWH diagnosed in Fiebig stages III and IV/V (p < 0.03 for both). Proportions of A-NKs defined as either Fcε-Receptor-1γ- or NKG2C+/CD57+ were significantly associated with HIV DNA levels at diagnosis (p = 0.046 and 0.029, respectively) and trended toward an association after 48 wk of ART. Proportions of activated HLA-DR+/CD38+ NK cells remained elevated in PWH despite early ART initiation. NK cell activation and A-NK expansion occur very early after HIV transmission, before T cell activation, and are not altered by ART initiation during acute infection. A-NKs may contribute to HIV control and thus be useful for HIV cure.


Subject(s)
HIV Infections , Killer Cells, Natural , Humans , HIV Infections/immunology , HIV Infections/drug therapy , Killer Cells, Natural/immunology , Male , Adult , HIV-1/immunology , Anti-Retroviral Agents/therapeutic use , Adaptive Immunity , Acute Disease , Young Adult
3.
PLoS Pathog ; 19(12): e1011780, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055771

ABSTRACT

Subtype B HIV-1 has been the primary driver of the HIV-1 epidemic in the United States (U.S.) for over forty years and is also a prominent subtype in the Americas, Europe, Australia, the Middle East and North Africa. In this study, the neutralization profiles of contemporary subtype B Envs from the U.S. were assessed to characterize changes in neutralization sensitivities over time. We generated a panel of 30 contemporary pseudoviruses (PSVs) and demonstrated continued diversification of subtype B Env from the 1980s up to 2018. Neutralization sensitivities of the contemporary subtype B PSVs were characterized using 31 neutralizing antibodies (NAbs) and were compared with strains from earlier in the HIV-1 pandemic. A significant reduction in Env neutralization sensitivity was observed for 27 out of 31 NAbs for the contemporary as compared to earlier-decade subtype B PSVs. A decline in neutralization sensitivity was observed across all Env domains; the NAbs that were most potent early in the pandemic suffered the greatest decline in potency over time. A meta-analysis demonstrated this trend across multiple subtypes. As HIV-1 Env diversification continues, changes in Env antigenicity and neutralization sensitivity should continue to be evaluated to inform the development of improved vaccine and antibody products to prevent and treat HIV-1.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , United States/epidemiology , HIV Antibodies , Neutralization Tests , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Antibodies, Neutralizing , Pandemics
4.
PLoS Pathog ; 19(5): e1011359, 2023 05.
Article in English | MEDLINE | ID: mdl-37256916

ABSTRACT

The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibody Formation , HIV Infections/prevention & control , Immunization, Secondary/methods , Antibody Specificity , HIV Antibodies , HIV Envelope Protein gp120
5.
PLoS Pathog ; 18(3): e1010369, 2022 03.
Article in English | MEDLINE | ID: mdl-35303045

ABSTRACT

Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth.


Subject(s)
HIV-1 , Antibodies, Neutralizing , Epitopes , HIV Antibodies , HIV-1/genetics , Humans , Prospective Studies , env Gene Products, Human Immunodeficiency Virus/genetics
6.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34470866

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/virology , Macaca mulatta/immunology , Nanoparticles/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Ferritins/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology
7.
Clin Infect Dis ; 76(3): e718-e726, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35687498

ABSTRACT

BACKGROUND: Efavirenz (EFV)- and dolutegravir (DTG)-based antiretroviral therapy (ART) is the former and current recommended regimen for treatment-naive individuals with human immunodeficiency virus type 1 (HIV-1). Whether they impact the immunological and neuropsychiatric profile differentially remains unclear. METHODS: This retrospective analysis included 258 participants enrolled during acute HIV-1 infection (AHI). Participants initiated 1 of 3 ART regimens during AHI: EFV-based (n = 131), DTG-based (n = 92), or DTG intensified with maraviroc (DTG/MVC, n = 35). All regimens included 2 nucleoside reverse-transcriptase inhibitors and were maintained for 96 weeks. CD4+ and CD8+ T-cell counts, mood symptoms, and composite score on a 4-test neuropsychological battery (NPZ-4) were compared. RESULTS: At baseline, the median age was 26 years, 99% were male, and 36% were enrolled during Fiebig stage I-II. Plasma viral suppression at weeks 24 and 96 was similar between the groups. Compared with the EFV group, the DTG group showed greater increments of CD4+ (P < .001) and CD8+ (P = .015) T-cell counts but a similar increment of CD4/CD8 ratio at week 96. NPZ-4 improvement was similar between the 2 groups at week 24 but greater in the DTG group at week 96 (P = .005). Depressive mood and distress symptoms based on the Patient Health Questionnaire and distress thermometer were similar between the 2 groups at follow-up. Findings for the DTG/MVC group were comparable to those for the DTG group vs the EFV group. CONCLUSIONS: Among individuals with AHI, 96 weeks of DTG-based ART was associated with greater increments of CD4+ and CD8+ T-cell counts and improvement in cognitive performance.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Male , Adult , Female , Retrospective Studies , Benzoxazines/therapeutic use , Heterocyclic Compounds, 3-Ring/adverse effects , Cognition , Anti-HIV Agents/therapeutic use
8.
PLoS Pathog ; 17(12): e1010105, 2021 12.
Article in English | MEDLINE | ID: mdl-34874976

ABSTRACT

HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Central Nervous System/virology , Cerebrospinal Fluid/virology , HIV Infections/virology , Simian Acquired Immunodeficiency Syndrome/virology , Animals , HIV-1 , Humans , Macaca mulatta , RNA, Viral/cerebrospinal fluid , Simian Immunodeficiency Virus
9.
PLoS Pathog ; 17(8): e1009785, 2021 08.
Article in English | MEDLINE | ID: mdl-34388205

ABSTRACT

HIV-1 disrupts the host epigenetic landscape with consequences for disease pathogenesis, viral persistence, and HIV-associated comorbidities. Here, we examined how soon after infection HIV-associated epigenetic changes may occur in blood and whether early initiation of antiretroviral therapy (ART) impacts epigenetic modifications. We profiled longitudinal genome-wide DNA methylation in monocytes and CD4+ T lymphocytes from 22 participants in the RV254/SEARCH010 acute HIV infection (AHI) cohort that diagnoses infection within weeks after estimated exposure and immediately initiates ART. We identified monocytes harbored 22,697 differentially methylated CpGs associated with AHI compared to 294 in CD4+ T lymphocytes. ART minimally restored less than 1% of these changes in monocytes and had no effect upon T cells. Monocyte DNA methylation patterns associated with viral load, CD4 count, CD4/CD8 ratio, and longitudinal clinical phenotypes. Our findings suggest HIV-1 rapidly embeds an epigenetic memory not mitigated by ART and support determining epigenetic signatures in precision HIV medicine. Trial Registration: NCT00782808 and NCT00796146.


Subject(s)
Antiretroviral Therapy, Highly Active/statistics & numerical data , CD4-Positive T-Lymphocytes/virology , DNA Methylation , HIV Infections/virology , HIV-1/immunology , Monocytes/virology , Viral Load , Adult , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/immunology , HIV-1/drug effects , Humans , Male , Monocytes/drug effects , Monocytes/immunology , Young Adult
10.
PLoS Pathog ; 17(2): e1009339, 2021 02.
Article in English | MEDLINE | ID: mdl-33600506

ABSTRACT

Toll-like receptor 7 (TLR7) agonist and PGT121 (broadly neutralizing antibody, bnAb) administration previously delayed viral rebound and induced SHIV remission. We evaluated the impact of GS-986 (TLR7 agonist) and dual bnAbs on viral rebound after antiretroviral therapy (ART) interruption. Rhesus macaques inoculated with SHIV-1157ipd3N4 were initiated on daily suppressive ART from Day 14 post SHIV inoculation. Active arm animals (n = 8) received GS-986, N6-LS and PGT121 after plasma viral suppression, starting from week 14. GS-986 induced immune activation and SHIV-specific T cell responses but not viral expression in all the active arm animals. After ART interruption, median time to viral rebound was 6 weeks in the active and 3 weeks in the control arm (p = 0.024). In this animal model, the administration of the combination of GS-986 and dual bnAbs was associated with a modest delay in viral rebound. This strategy should be further evaluated to better understand the underlying mechanisms for the induction of virus-specific immune responses and delay in viral rebound.


Subject(s)
Anti-Retroviral Agents/pharmacology , Antibodies, Neutralizing/pharmacology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/drug effects , Toll-Like Receptor 7/agonists , Viral Load , Viremia/immunology , Animals , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/virology , Viremia/drug therapy , Viremia/virology
12.
Proc Natl Acad Sci U S A ; 117(38): 23652-23662, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32868447

ABSTRACT

The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Many vaccine candidates focus on the Spike protein, as it is targeted by neutralizing antibodies and plays a key role in viral entry. Here we investigate the diversity seen in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and compare it to the sequence on which most vaccine candidates are based. Using 18,514 sequences, we perform phylogenetic, population genetics, and structural bioinformatics analyses. We find limited diversity across SARS-CoV-2 genomes: Only 11 sites show polymorphisms in >5% of sequences; yet two mutations, including the D614G mutation in Spike, have already become consensus. Because SARS-CoV-2 is being transmitted more rapidly than it evolves, the viral population is becoming more homogeneous, with a median of seven nucleotide substitutions between genomes. There is evidence of purifying selection but little evidence of diversifying selection, with substitution rates comparable across structural versus nonstructural genes. Finally, the Wuhan-Hu-1 reference sequence for the Spike protein, which is the basis for different vaccine candidates, matches optimized vaccine inserts, being identical to an ancestral sequence and one mutation away from the consensus. While the rapid spread of the D614G mutation warrants further study, our results indicate that drift and bottleneck events can explain the minimal diversity found among SARS-CoV-2 sequences. These findings suggest that a single vaccine candidate should be efficacious against currently circulating lineages.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , Viral Vaccines/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/prevention & control , Genetic Variation , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Point Mutation , SARS-CoV-2 , Selection, Genetic
13.
J Infect Dis ; 225(12): 2167-2175, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35275599

ABSTRACT

Starting antiretroviral therapy (ART) in Fiebig 1 acute HIV infection limits the size of viral reservoirs in lymphoid tissues, but does not impact time to virus rebound during a treatment interruption. To better understand why the reduced reservoir size did not increase the time to rebound we measured the frequency and location of HIV RNA+ cells in lymph nodes from participants in the RV254 acute infection cohort. HIV RNA+ cells were detected more frequently and in greater numbers when ART was initiated in Fiebig 1 compared to later Fiebig stages and were localized to the T-cell zone compared to the B-cell follicle with treatment in later Fiebig stages. Variability of virus production in people treated during acute infection suggests that the balance between virus-producing cells and the immune response to clear infected cells rapidly evolves during the earliest stages of infection. Clinical Trials Registration: NCT02919306.


Subject(s)
HIV Infections , Lymph Nodes , RNA, Viral , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Lymph Nodes/virology , RNA, Viral/isolation & purification
14.
Emerg Infect Dis ; 28(11): 2214-2225, 2022 11.
Article in English | MEDLINE | ID: mdl-36220131

ABSTRACT

Prior immune responses to coronaviruses might affect human SARS-CoV-2 response. We screened 2,565 serum and plasma samples collected from 2013 through early 2020, before the COVID-19 pandemic began, from 2,250 persons in 4 countries in Africa (Kenya, Nigeria, Tanzania, and Uganda) and in Thailand, including persons living with HIV-1. We detected IgG responses to SARS-CoV-2 spike (S) subunit 2 protein in 1.8% of participants. Profiling against 23 coronavirus antigens revealed that responses to S, subunit 2, or subunit 1 proteins were significantly more frequent than responses to the receptor-binding domain, S-Trimer, or nucleocapsid proteins (p<0.0001). We observed similar responses in persons with or without HIV-1. Among all coronavirus antigens tested, SARS-CoV-2, SARS-CoV-1, and Middle East respiratory syndrome coronavirus antibody responses were much higher in participants from Africa than in participants from Thailand (p<0.01). We noted less pronounced differences for endemic coronaviruses. Serosurveys could affect vaccine and monoclonal antibody distribution across global populations.


Subject(s)
COVID-19 , Humans , Antibodies, Monoclonal , Antibodies, Viral , Antibody Formation , COVID-19/epidemiology , Immunoglobulin G , Nigeria , Nucleocapsid Proteins , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Thailand/epidemiology , Africa
15.
J Neuroinflammation ; 19(1): 40, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130924

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. METHODS: Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. RESULTS: All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6-6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. CONCLUSIONS: The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Animals , Flow Cytometry , Macaca mulatta , Zika Virus Infection/complications
16.
J Virol ; 95(17): e0079721, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34160251

ABSTRACT

Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield's reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/epidemiology , HIV-1/immunology , Immune Evasion/immunology , Polysaccharides/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Africa, Eastern/epidemiology , Antibodies, Neutralizing/blood , Cohort Studies , Epitopes , Glycosylation , HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/virology , Humans , Thailand/epidemiology
17.
PLoS Pathog ; 16(12): e1009101, 2020 12.
Article in English | MEDLINE | ID: mdl-33290394

ABSTRACT

The RV144 vaccine efficacy clinical trial showed a reduction in HIV-1 infections by 31%. Vaccine efficacy was associated with stronger binding antibody responses to the HIV Envelope (Env) V1V2 region, with decreased efficacy as responses wane. High levels of Ab-dependent cellular cytotoxicity (ADCC) together with low plasma levels of Env-specific IgA also correlated with decreased infection risk. We investigated whether B cell priming from RV144 vaccination impacted functional antibody responses to HIV-1 following infection. Antibody responses were assessed in 37 vaccine and 63 placebo recipients at 6, 12, and 36 months following HIV diagnosis. The magnitude, specificity, dynamics, subclass recognition and distribution of the binding antibody response following infection were different in RV144 vaccine recipients compared to placebo recipients. Vaccine recipients demonstrated increased IgG1 binding specifically to V1V2, as well as increased IgG2 and IgG4 but decreased IgG3 to HIV-1 Env. No difference in IgA binding to HIV-1 Env was detected between the vaccine and placebo recipients following infection. RV144 vaccination limited the development of broadly neutralizing antibodies post-infection, but enhanced Fc-mediated effector functions indicating B cell priming by RV144 vaccination impacted downstream antibody function. However, these functional responses were not associated with clinical markers of disease progression. These data reveal that RV144 vaccination primed B cells towards specific binding and functional antibody responses following HIV-1 infection.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Adult , Antibody Formation/immunology , B-Lymphocytes/immunology , Female , HIV Antibodies/blood , HIV-1 , Humans , Immunoglobulin G/immunology , Male , Middle Aged , env Gene Products, Human Immunodeficiency Virus/immunology
18.
Psychosom Med ; 84(8): 976-983, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36162059

ABSTRACT

OBJECTIVE: We examined individual differences in CD4/CD8 T-cell ratio trajectories and associated risk profiles from acute HIV infection (AHI) through 144 weeks of antiretroviral therapy (ART) using a data-driven approach. METHODS: A total of 483 AHI participants began ART during Fiebig I-V and completed follow-up evaluations for 144 weeks. CD4+, CD8+, and CD4/CD8 T-cell ratio trajectories were defined followed by analyses to identify associated risk variables. RESULTS: Participants had a median viral load (VL) of 5.88 copies/ml and CD4/CD8 T-cell ratio of 0.71 at enrollment. After 144 weeks of ART, the median CD4/CD8 T-cell ratio was 1.3. Longitudinal models revealed five CD4/CD8 T-cell ratio subgroups: group 1 (3%) exhibited a ratio >1.0 at all visits; groups 2 (18%) and 3 (29%) exhibited inversion at enrollment, with normalization 4 and 12 weeks after ART, respectively; and groups 4 (31%) and 5 (18%) experienced CD4/CD8 T-cell ratio inversion due to slow CD4+ T-cell recovery (group 4) or high CD8+ T-cell count (group 5). Persistent inversion corresponded to ART onset after Fiebig II, higher VL, soluble CD27 and TIM-3, and lower eosinophil count. Individuals with slow CD4+ T-cell recovery exhibited higher VL, lower white blood cell count, lower basophil percent, and treatment with standard ART, as well as worse mental health and cognition, compared with individuals with high CD8+ T-cell count. CONCLUSIONS: Early HIV disease dynamics predict unfavorable CD4/CD8 T-cell ratio outcomes after ART. CD4+ and CD8+ T-cell trajectories contribute to inversion risk and correspond to specific viral, immune, and psychological profiles during AHI. Adjunctive strategies to achieve immune normalization merit consideration.


Subject(s)
Anti-HIV Agents , HIV Infections , Anti-HIV Agents/therapeutic use , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes , HIV Infections/drug therapy , Hepatitis A Virus Cellular Receptor 2/therapeutic use , Humans , Individuality , Viral Load
19.
Curr HIV/AIDS Rep ; 19(1): 86-93, 2022 02.
Article in English | MEDLINE | ID: mdl-35089535

ABSTRACT

PURPOSE OF REVIEW: This review examines the major advances and obstacles in the field of HIV vaccine research as they pertain to informing the development of vaccines against SARS-CoV-2. RECENT FINDINGS: Although the field of HIV research has yet to deliver a licensed vaccine, the technologies developed and knowledge gained in basic scientific disciplines, translational research, and community engagement have positively impacted the development of vaccines for other viruses, most notably and recently for SARS-CoV-2. These advances include the advent of viral vectors and mRNA as vaccine delivery platforms; the use of structural biology for immunogen design; an emergence of novel adjuvant formulations; a more sophisticated understanding of viral phylogenetics; improvements in the development and harmonization of accurate assays for vaccine immunogenicity; and maturation of the fields of bioethics and community engagement for clinical trials conducted in diverse populations. Decades of foundational research and investments into HIV biology, though yet to yield an authorized or approved vaccine for HIV/AIDS, have now paid dividends in the rapid development of safe and effective SARS-CoV-2 vaccines. This latter success presents an opportunity for feedback on improved pathways for development of safe and efficacious vaccines against HIV and other pathogens.


Subject(s)
AIDS Vaccines , COVID-19 , HIV Infections , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/prevention & control , Humans , Research , SARS-CoV-2
20.
PLoS Comput Biol ; 17(2): e1008537, 2021 02.
Article in English | MEDLINE | ID: mdl-33524022

ABSTRACT

While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factors impact estimates of the infection dates in an acute HIV-1 infection cohort, RV217. In this cohort, HIV-1 diagnosis corresponded to the first RNA positive test and occurred a median of four days after the last negative test, allowing us to compare timing estimates using BEAST to a narrow window of infection. We analyzed HIV-1 sequences sampled one week, one month and six months after HIV-1 diagnosis in 39 individuals. We found that shared diversity and temporal signal was limited in acute infection, and insufficient to allow timing inferences in the shortest HIV-1 genes, thus dated phylogenies were primarily analyzed for env, gag, pol and near full-length genomes. There was no one best-fitting model across participants and genes, though relaxed molecular clocks (73% of best-fitting models) and the Bayesian skyline (49%) tended to be favored. For infections with single founders, the infection date was estimated to be around one week pre-diagnosis for env (IQR: 3-9 days) and gag (IQR: 5-9 days), whilst the genome placed it at a median of 10 days (IQR: 4-19). Multiply-founded infections proved problematic to date. Our ability to compare timing inferences to precise estimates of HIV-1 infection (within a week) highlights that molecular dating methods can be applied to within-host datasets from early infection. Nonetheless, our results also suggest caution when using uniform clock and population models or short genes with limited information content.


Subject(s)
HIV Infections/epidemiology , HIV-1 , Models, Biological , Software , Bayes Theorem , Cohort Studies , Computational Biology , Female , Genes, Viral , Genetic Variation , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Humans , Likelihood Functions , Longitudinal Studies , Male , Models, Genetic , Phylogeny , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL