Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Phys Chem Chem Phys ; 24(17): 10069-10078, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35416222

ABSTRACT

Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone.


Subject(s)
Acetone , Vanillic Acid , Fluorocarbon Polymers , Scattering, Small Angle , Water/chemistry , X-Ray Diffraction
2.
J Memb Sci ; 5932020 Jan 01.
Article in English | MEDLINE | ID: mdl-32863548

ABSTRACT

Self-diffusivities of ethane were measured by multinuclear pulsed field gradient (PFG) NMR inside zeolitic imidazolate framework-11 (ZIF-11) crystals dispersed in several selected polymers to form mixed-matrix membranes (MMMs). These diffusivities were compared with the corresponding intracrystalline self-diffusivities in ZIF-11 crystal beds. It was observed that the confinement of ZIF-11 crystals in ZIF-11 / Torlon MMM can lead to a decrease in the ethane intracrystalline self-diffusivity. Such diffusivity decrease was observed at different temperatures used in this work. PFG NMR measurements of the temperature dependence of the intracrystalline self-diffusivity of ethylene in the same ZIF-11 / Torlon MMM revealed similar diffusivity decrease as well as an increase in the diffusion activation energy in comparison to those in unconfined ZIF-11 crystals in a crystal bed. These observations for ethane and ethylene were attributed to the reduction of the flexibility of the ZIF-11 framework due to the confinement in Torlon leading to a smaller effective aperture size of ZIF-11 crystals. Surprisingly, the intra-ZIF diffusion selectivity for ethane and ethylene was not changed appreciably by the confinement of ZIF-11 crystals in Torlon in comparison to the selectivity in a bed of ZIF-11 crystals. No ZIF-11 confinement effects leading to a reduction in the intracrystalline self-diffusivity of ethane and ethylene were observed for the other two studied MMM systems: ZIF-11 / Matrimid and ZIF-11 / 6FDA-DAM. The absence of the confinement effect in the latter MMMs can be related to the lower values of the polymer bulk modulus in these MMMs in comparison to that in ZIF-11 / Torlon MMM. In addition, there may be a contribution from possible differences in the ZIF-11/polymer adhesion in different MMM types.

3.
Article in English | MEDLINE | ID: mdl-32831626

ABSTRACT

Self-diffusion of pure gases including carbon dioxide, methane, ethylene, ethane, and xenon as well as selected two-component mixtures was studied in hybrid zeolitic imidazolate framework-7-8 (ZIF-7-8) crystals using pulsed field gradient (PFG) NMR. This material was formed by mixing 2-methylimidazolate (ZIF-8 linker) and bulkier benzimidazolate (ZIF-7 linker) in the same framework. The intracrystalline diffusion data measured in mixed-linker ZIF-7-8 was compared with the corresponding data in the parent ZIF-8 material. It was found that under the same or comparable experimental conditions the intracrystalline gas diffusion was always slower in ZIF-7-8 than in ZIF-8. This observation is consistent with the expected lower pore aperture size in ZIF-7-8 than in ZIF-8. At the same time, the ethane/ethylene diffusion selectivity was found to be similar in both ZIFs. It was also observed that for the pure studied gases larger than carbon dioxide the diffusivity ratios in ZIF-8 and ZIF-7-8 do not increase with increasing gas size at all loading pressures used. All these data are attributed to greater framework flexibility effects in ZIF-7-8 than ZIF-8. Such effects manifest themselves in a distortion and/or increase in the aperture size in the presence of large sorbates due to linker flexibility.

4.
Phys Chem Chem Phys ; 20(37): 23967-23975, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30211405

ABSTRACT

Pulsed field gradient (PFG) NMR was used in combination with single crystal IR microscopy (IRM) to study diffusion of ethane inside crystals of a mixed linker zeolitic imidazolate framework (ZIF) of the type ZIF-7-8 under comparable experimental conditions. These crystals contain 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker). It was observed that the PFG NMR attenuation curves measured for ethane in ZIF-7-8 exhibit deviations from the monoexponential behaviour, thereby indicating that the ethane self-diffusivity in different crystals of a crystal bed can be different. Measurements of the ethane uptake curves performed by IRM under the same conditions in different ZIF-7-8 crystals of the bed yield different transport diffusivities thus confirming that the rate of ethane diffusion is different in different ZIF-7-8 crystals. The IRM observation that the fractions of ZIF-8 and ZIF-7 linkers are different in different ZIF-7-8 crystals allowed attributing the observed heterogeneity in diffusivities to the heterogeneity in the linker fraction. The quantitative comparison of the average ethane self-diffusivities measured by PFG NMR in ZIF-7-8 with the corresponding data on corrected diffusivities from IRM measurements revealed a good agreement between the results obtained by the two techniques. In agreement with the expectation of smaller aperture sizes in ZIF-7-8 than in ZIF-8, the average ethane self-diffusivities in ZIF-7-8 were found to be significantly lower than the corresponding self-diffusivities in ZIF-8.

5.
Langmuir ; 33(20): 5006-5014, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28475342

ABSTRACT

NMR techniques have been widely used to infer molecular structure, including surfactant aggregation. A combination of optical spectroscopy, proton NMR spectroscopy, and pulsed field gradient NMR (PFG NMR) is used to study the adsorption number for sodium dodecyl sulfate (SDS) with single-wall carbon nanotubes (SWCNTs). Distinct transitions in the NMR chemical shift of SDS are observed in the presence of SWCNTs. These transitions demonstrate that micelle formation is delayed by SWCNTs due to the adsorption of SDS on the nanotube surface. Once the nanotube surface is saturated, the free SDS concentration increases until micelle formation is observed. Therefore, the adsorption number of SDS on SWCNTs can be determined by the changes to the apparent critical micelle concentration (CMC). PFG NMR found that SDS remains strongly bound onto the nanotube. Quantitative analysis of the diffusivity of SDS allowed calculation of the adsorption number of strongly bound SDS on SWCNTs. The adsorption numbers from these techniques give the same values within experimental error, indicating that a significant fraction of the SDS interacting with nanotubes remains strongly bound for as long as 0.5 s, which is the maximum diffusion time used in the PFG NMR measurements.

6.
Anal Chem ; 86(4): 2200-4, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24432853

ABSTRACT

Crystalline solids composed of one-dimensional channels with cross-sectional dimensions below 1 nm represent an intriguing class of materials with important potential applications. A key characteristic for certain applications is the average open channel persistence length, i.e., the ensemble average distance from a channel opening to the first obstruction. This paper introduces an NMR-based methodology to measure this quantity. The protocol is applied to polycrystalline specimens of two different dipeptide nanotubes: l-Ala-l-Val and its retro-analog l-Val-l-Ala. Persistence lengths derived from the NMR measurements are found to be comparable to the typical crystallite dimensions seen in scanning electron microscopy (SEM) images, indicating that the crystals of these AV and VA specimens are essentially hollow with practically no blockages. Applications of the method to an AV sample that has been pulverized in a mortar and pestle showed that the open channel persistence length was reduced from 50 to 6.6 µm, consistent with the crystallite sizes observed in SEM images.

7.
J Chem Phys ; 139(15): 154703, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24160529

ABSTRACT

Pulsed field gradient (PFG) NMR was used to investigate the self-diffusion of carbon dioxide in alumina stabilized samaria aerogel catalyst, a promising porous catalyst for gas-phase reactions featuring high porosity and high surface area. For diffusion studies, the catalyst was prepared in two sample packing types, macroscopic monoliths (i.e., macroscopic cylindrical particles) and powder beds with particle sizes around 200 µm that are considered for catalytic applications. Studies of diffusion in these samples revealed how macroscopic packing influences the catalyst transport properties. Application of a high magnetic field of 17.6 T in the reported PFG NMR studies enabled diffusion measurements for relatively low carbon dioxide densities in the catalyst samples corresponding to a gas loading pressure of around 0.1 atm. As a result, it was possible to perform diffusion measurements for a large range of carbon dioxide loading pressures between 0.1 and 10 atm. The measured carbon dioxide diffusivities in the beds of catalyst particles are interpreted in the context of a simple diffusion-mediated exchange model previously used for zeolites and other porous materials.

8.
Catal Letters ; 153(11): 3405-3422, 2023.
Article in English | MEDLINE | ID: mdl-37799191

ABSTRACT

In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes.

9.
Langmuir ; 28(27): 10296-303, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22694169

ABSTRACT

Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed.


Subject(s)
Carbon Dioxide/chemistry , Methane/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Diffusion , Membranes, Artificial , Polymers , Sorbic Acid/chemistry
10.
Chem Commun (Camb) ; 58(88): 12305-12308, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36250295

ABSTRACT

The separation of xylene isomers still remains an industrially challenging task. Here, porous purine-based metal-organic frameworks (MOFs) have been synthesized and studied for their potential in xylene separations. In particular, Zn(purine)I showed excellent para-xylene/ortho-xylene separation capability with a diffusion selectivity of 6 and high equilibrium adsorption selectivity as indicated by coadsorption experiments. This high selectivity is attributed to the shape and size of the channel aperture within the rigid framework of Zn(purine)I.


Subject(s)
Metal-Organic Frameworks , Xylenes , Adsorption , Isomerism , Purines
11.
J Phys Chem B ; 124(40): 8943-8950, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-32931279

ABSTRACT

Pulsed field gradient (PFG) NMR at high field was utilized to directly observe a transition between two different diffusion regimes in a Nafion 117 membrane loaded with water and acetone. Although water self-diffusivity at small water loadings was observed to be diffusion time-independent in the limit of small and large diffusion times, it showed a significant decrease with increasing diffusion time at intermediate times corresponding to root mean square displacements on the order of several microns. Under our experimental conditions, no self-diffusivity dependence on diffusion time was found for water at large water loadings and for acetone at all studied acetone loadings. The diffusion time-dependent self-diffusivity at small water concentration is explained by the existence of finite domains of interconnected water channels with sizes in the range of several microns that form in Nafion in the presence of acetone. The domain sizes and permeance of transport barriers separating adjacent domains are estimated based on the measured PFG NMR data. At large water concentrations, the water channels form a fully interconnected network, resulting in time-independent self-diffusivity. The absence of such a percolation-like transition with increasing molecular concentration for acetone is attributed to a difference in the regions available for water and acetone diffusion in Nafion. The diffusion data are correlated with and supported by structural data obtained using small-angle X-ray and neutron scattering techniques. These techniques reveal distinct water channels with radial dimensions in the nanometer range increasing upon water addition, while acetone appears to be in an interfacial perfluoroether region, reducing the size of the radial channel dimension.

12.
J Phys Chem B ; 113(18): 6353-9, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19361225

ABSTRACT

In this work, we applied a novel pulsed field gradient (PFG) NMR option, which combines advantages of high-field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m), to study diffusion of anions, cations and water in two 1-ethyl-3-methylimidazolium-based ionic liquids. Application of high field allows for an easy recording of an NMR signal from small amounts of water added to the ionic liquids. Using high gradients is advantageous because under conditions of such gradients any susceptibility-induced inhomogeneities in the local magnetic field are expected to be negligibly small in comparison with the applied gradients. PFG NMR studies have been performed in a broad range of temperatures and for different diffusion times. The effect of water addition on the diffusion behavior of the anions and cations is discussed in the context of the presence of polar and nonpolar domains in the ionic liquids. A partial screening of the electrostatic interaction between the cations and anions in the polar domains by water is believed to be responsible for the following changes in the diffusion behavior, which were observed experimentally: (i) increase in the ion diffusivities with increasing water concentration, and (ii) decrease in the difference between the diffusion coefficient of the cation and that of the anion as water concentration increases.

13.
Chem Commun (Camb) ; 55(39): 5619-5622, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31025663

ABSTRACT

Self-assembly of brominated triphenylamine bis-urea macrocycles affords robust porous materials. Urea hydrogen bonds organize these building blocks into 1-dimensional columns, which pack via halogen-aryl interactions. The crystals are stable when emptied, present two distinct absorption sites for Xe with restricted Xe diffusion, and exhibit single-crystal-to-single-crystal guest exchange.

14.
J Phys Chem B ; 112(12): 3821-5, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311967

ABSTRACT

The tracer zero-length column (ZLC) method has been employed to study the diffusion of toluene in one-dimensional ZSM-12 and SAPO-5 zeolites. A significant deviation in the shape of the measured tracer exchange curves from monoexponential behavior was observed for toluene diffusion in both adsorbents in the limit of long-time asymptotes. In contrast, water/ZSM-12 and acetylene/SAPO-5 systems exhibit tracer exchange curves that are close to monoexponential behavior. Monoexponential curves are usually observed for systems obeying normal (Fickian) diffusion. Such diffusion is expected for the latter two systems because the diameters of both sorbates are less than the radii of their corresponding host channels. The differences in the shape of the tracer exchange curves for large and small sorbates can be explained by assuming the occurrence of anomalous, single-file diffusion for large sorbates in narrow, one-dimensional channels.

15.
J Phys Chem B ; 112(16): 4961-6, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18373375

ABSTRACT

Proton pulsed field gradient (PFG) NMR was used to study the diffusion of poly(diallyldimethylammonium chloride) (PDADMAC) in coacervates formed from this polycation and the protein bovine serum albumin (BSA). Application of high (up to 30 T/m) magnetic field gradients in PFG NMR measurements allowed probing the diffusion of PDADMAC on a length scale of displacements as small as 100 nm in coacervates formed at different pH's and ionic strengths, i.e., conditions of varying protein-polycation interaction energy. Studies were carried out for a broad range of diffusion times and corresponding values of the mean square displacements. Several ensembles of PDADMAC polycations with different diffusivities were observed in the measured range of diffusion times. The existence of these ensembles and the pattern of their changes with increasing diffusion time support the hypothesis about the microscopic heterogeneity of PDADMAC-BSA coacervates and also provide evidence for the dynamic disintegration and reformation of dense domains.


Subject(s)
Electrolytes/chemistry , Polymers/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Diffusion , Magnetic Resonance Spectroscopy , Molecular Structure , Protons
16.
Magn Reson Imaging ; 25(4): 493-6, 2007 May.
Article in English | MEDLINE | ID: mdl-17466771

ABSTRACT

This work demonstrates the feasibility of noninvasive studies of diffusion on a submicrometer length scale in aligned model lipid membranes using pulsed field gradient nuclear magnetic resonance with ultrahigh (up to 35 T/m) gradient strength. Application of such gradients allows the use of sufficiently small diffusion times under conditions of narrow-pulse approximation. As a result, monitoring anomalous or restricted diffusion in lipid membranes on a length scale in the range of 100 nm becomes possible. The ability to study diffusion in lipid membranes on this length scale is very important because it is comparable with the size of biologically relevant domains (i.e., rafts), which are believed to exist in biomembranes.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Membrane Lipids , Diffusion , Feasibility Studies , Lipid Bilayers/chemistry , Magnetics , Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Models, Biological
17.
J Phys Chem B ; 110(47): 23821-8, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125347

ABSTRACT

Evolution of internal concentration profiles of methanol in 2-D pore structure of ferrierite crystal was measured in the pressure range of 0 to 80 mbar with the help of the recently developed interference microscopy technique. The measured profiles showed that both a surface barrier and internal diffusion controlled the kinetics of adsorption/desorption. Furthermore, they indicated that in the main part of the crystal, the z-directional 10-ring channels were not accessible to methanol and that the transport of methanol mainly occurred via 8-ring y-directional channels. The roof-like part of the crystal was almost instantaneously filled/emptied during adsorption/desorption, indicating accessible 10-ring channels in this section. The measured profiles were analyzed microscopically with the direct application of Fick's second law, and the transport diffusivity of methanol in ferrierite was determined as a function of adsorbed phase concentration. The transport diffusivity varied by more than 2 orders of magnitude over the investigated pressure range. Transport diffusivities, calculated from measured profiles from small and large pressure step changes, were all found to be consistent. Simulated concentration profiles obtained from the solution of Fick's second law with the calculated functional dependence of diffusivities on concentration compared very well with the measured concentration profiles, indicating validity and consistency of the measured data and the calculated diffusivities. The results indicate the importance of measuring the evolution of concentration profiles as this information is vital in determining (1) the direction of internal transport, (2) the presence of internal structural defects, and (3) surface/internal transport barriers. Such detailed information is available neither from common macroscopic methods since, they measure changes in macroscopic properties and use model assumptions to predict the concentration profiles inside, nor from microscopic methods, since they only provide information on average displacement of diffusing molecules.

18.
J Phys Chem B ; 109(35): 16711-7, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16853127

ABSTRACT

We study the tracer exchange of molecules between the phase adsorbed in one-dimensional channels and the surrounding gas phase by molecular dynamics simulations. Under the conditions of single-file diffusion, a novel boundary effect is observed. The shape of the tracer-exchange concentration profiles deviates from those obtained under the conditions of normal diffusion. Compared to the profiles for normal diffusion, which correspond to the same degree of exchange, the equilibrium concentration is reached faster at the boundaries and slower in the middle part of the channel in the case of single-file diffusion. This boundary effect is observed for the system neopentane in AlPO4-5 (which was chosen as a reference system), as well as for modified systems. The effect can be understood considering two diffusion mechanisms which occur in parallel. First, the diffusion of the whole chain of particles, that is, the center-of-mass diffusion, obeying the laws of normal diffusion. Second, the individual movement of the particles relative to the center of mass of the chain. The second mechanism admits additional displacements which, on average, lead to an accelerated exchange of the marginal particles.

19.
J Phys Chem B ; 109(28): 13523-8, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16852692

ABSTRACT

The sticking coefficient, i.e., the probability that, on hitting the surface of a nanoporous particle (zeolite), a molecule shall be able to enter the intracrystalline space, is a key quantity for the application of such materials in heterogeneous catalysis and molecular sieving. On the basis of pulsed field gradient NMR diffusion measurements and molecular dynamics simulations, typical values of this probability are found to be close to one. They exceed previous estimates on the basis of IR uptake measurements by many orders of magnitude.

20.
Magn Reson Imaging ; 23(2): 139-45, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15833604

ABSTRACT

Owing to the recent progress in the area of hardware and software of the pulsed field gradient NMR technique, molecular transport in real-life zeolite systems, such as zeolite beds and particles of formulated fluid catalytic cracking (FCC) catalysts, can be investigated in detail. These studies have revealed a number of important features of molecular transport in zeolites, which are reviewed in the present paper. In particular, the anomalous character of intracrystalline diffusion in MFI-type zeolites, dependence of the tortuosity factor in zeolite beds on diffusion regime and the role of various modes of diffusion in transport limitations arising for catalytic reactions in FCC catalysts will be discussed.


Subject(s)
Diffusion , Magnetic Resonance Spectroscopy , Porosity , Zeolites
SELECTION OF CITATIONS
SEARCH DETAIL