Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930837

ABSTRACT

The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.


Subject(s)
Cardiovascular Agents , Cardiovascular Diseases/metabolism , Cyclic GMP/metabolism , Natriuretic Peptides/metabolism , Receptors, Atrial Natriuretic Factor , Aged , Allosteric Regulation , Animals , Cardiovascular Agents/chemistry , Cardiovascular Agents/metabolism , Cardiovascular Agents/pharmacokinetics , Cardiovascular Agents/pharmacology , Cells, Cultured , Female , HEK293 Cells , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/metabolism , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/drug effects , Receptors, Atrial Natriuretic Factor/metabolism
2.
Nat Chem Biol ; 15(4): 367-376, 2019 04.
Article in English | MEDLINE | ID: mdl-30804532

ABSTRACT

Hypoxia-inducible factor-2 (HIF-2) is a heterodimeric transcription factor formed through dimerization between an oxygen-sensitive HIF-2α subunit and its obligate partner subunit ARNT. Enhanced HIF-2 activity drives some cancers, whereas reduced activity causes anemia in chronic kidney disease. Therefore, modulation of HIF-2 activity via direct-binding ligands could provide many new therapeutic benefits. Here, we explored HIF-2α chemical ligands using combined crystallographic, biophysical, and cell-based functional studies. We found chemically unrelated antagonists to employ the same mechanism of action. Their binding displaced residue M252 from inside the HIF-2α PAS-B pocket toward the ARNT subunit to weaken heterodimerization. We also identified first-in-class HIF-2α agonists and found that they significantly displaced pocket residue Y281. Its dramatic side chain movement increases heterodimerization stability and transcriptional activity. Our findings show that despite binding to the same HIF-2α PAS-B pocket, ligands can manifest as inhibitors versus activators by mobilizing different pocket residues to allosterically alter HIF-2α-ARNT heterodimerization.


Subject(s)
Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Basic Helix-Loop-Helix Transcription Factors , Crystallography, X-Ray , Dimerization , Ligands , Mice , Models, Molecular , Protein Binding , Protein Multimerization , Transcription Factors/physiology
3.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Article in English | MEDLINE | ID: mdl-28244987

ABSTRACT

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Subject(s)
Proteasome Inhibitors/pharmacology , Quinolines/pharmacology , Trans-Activators/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Quinolines/chemistry , Structure-Activity Relationship , Trans-Activators/metabolism
4.
Nat Chem Biol ; 8(5): 437-46, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426112

ABSTRACT

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.


Subject(s)
Lymphocyte Activation , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes/metabolism , CSK Tyrosine-Protein Kinase , Cell Membrane/metabolism , Down-Regulation , Humans , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , src-Family Kinases
5.
Bioorg Med Chem Lett ; 24(3): 1000-1004, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24412070

ABSTRACT

Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.


Subject(s)
Acetanilides/chemistry , Acetanilides/pharmacology , Alkaline Phosphatase/antagonists & inhibitors , Sulfonamides/chemistry , Sulfonamides/pharmacology , Acetanilides/isolation & purification , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Humans , Mice , Protein Isoforms/chemistry , Sulfonamides/isolation & purification
6.
Chemosphere ; 324: 138258, 2023 May.
Article in English | MEDLINE | ID: mdl-36898438

ABSTRACT

Deep-sea hydrothermal vent communities, revealing patterns of niche partitioning, live in a limited area characterised by sharp physico-chemical gradients. In this study, we investigated carbon, sulfur, nitrogen stable isotopes as well as arsenic (As) speciations and concentrations for two snails (Alviniconcha sp. and Ifremeria nautilei) and a crustacean, (Eochionelasmus ohtai manusensis), occupying distinct niches in the hydrothermal vent field of the Vienna Woods, Manus Basin, Western Pacific. δ13C values of Alviniconcha sp. (foot), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) are similar, from -28 to -33‰ (V-PDB). The δ15N values of Alviniconcha sp. (foot and chitin), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) range from 8.4 to 10.6‰. The δ34S values of Alviniconcha sp. (foot and chitin), I. nautilei (foot) and E. o. manusensis (soft tissue) range from 5.9 to 11.1‰. Using stable isotopes, for the first time, we inferred a Calvin-Benson (RuBisCo) metabolic pathway for Alviniconcha sp. along with the presence of γ-Proteobacteria symbionts for the Vienna Woods communities. For I. nautilei, a feeding pattern is proposed with γ-Proteobacteria symbiosis and a Calvin-Benson-Bassham diet with mixotrophic feeding. E. ohtai manusensis is filtering bacteria with a CBB feeding strategy, with δ15N values indicating possible higher position in the trophic chain. Arsenic concentrations in the dry tissue of Alviniconcha (foot), I. nautilei (foot) and E. o. manusensis (soft tissue) are high, from 4134 to 8478 µg/g, with inorganic As concentrations of 607, 492 and 104 µg/g, respectively and dimethyl arsenic (DMA) concentrations of 11.12, 0.25 and 11.2 µg/g, respectively. Snails occurring in a vent proximal position have higher As concentration than barnacles, a pattern not observed for S concentrations. Arsenosugars were not put in evidence indicating that the available organic material for the vent organisms are not surface derived.


Subject(s)
Arsenic , Hydrothermal Vents , Thoracica , Animals , Hydrothermal Vents/microbiology , Papua New Guinea , Snails , Isotopes
7.
Bioorg Med Chem Lett ; 22(21): 6656-60, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23010269

ABSTRACT

The recently discovered apelin/APJ system has emerged as a critical mediator of cardiovascular homeostasis and is associated with the pathogenesis of cardiovascular disease. A role for apelin/APJ in energy metabolism and gastrointestinal function has also recently emerged. We disclose the discovery and characterization of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221), a potent APJ functional antagonist in cell-based assays that is >37-fold selective over the closely related angiotensin II type 1 (AT1) receptor. ML221 was derived from an HTS of the ~330,600 compound MLSMR collection. This antagonist showed no significant binding activity against 29 other GPCRs, except to the κ-opioid and benzodiazepinone receptors (<50/<70%I at 10 µM). The synthetic methodology, development of structure-activity relationship (SAR), and initial in vitro pharmacologic characterization are also presented.


Subject(s)
Drug Discovery , Nitrobenzoates/chemical synthesis , Pyrans/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Apelin Receptors , Cardiovascular Agents/chemistry , Cardiovascular Agents/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Inhibitory Concentration 50 , Mice , Molecular Structure , Nitrobenzoates/chemistry , Nitrobenzoates/pharmacology , Protein Binding/drug effects , Pyrans/chemistry , Pyrans/pharmacology , Structure-Activity Relationship
8.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268121

ABSTRACT

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

9.
SLAS Discov ; 27(8): 448-459, 2022 12.
Article in English | MEDLINE | ID: mdl-36210051

ABSTRACT

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Subject(s)
Corticotropin-Releasing Hormone , Research Design , Humans , Animals , Mice , HEK293 Cells
10.
Biochem Biophys Res Commun ; 394(1): 194-9, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20188705

ABSTRACT

Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high-throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique.


Subject(s)
CD11b Antigen/metabolism , CD18 Antigens/metabolism , High-Throughput Screening Assays , Small Molecule Libraries , Animals , Ligands , Mice , Mice, Inbred Strains , Neutrophils/drug effects , Neutrophils/immunology
11.
Sci Rep ; 10(1): 18850, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139812

ABSTRACT

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , HMGA1a Protein/antagonists & inhibitors , HMGA2 Protein/antagonists & inhibitors , Suramin/chemistry , Adipogenesis/drug effects , Amino Acid Motifs/drug effects , Base Sequence/drug effects , Binding Sites/drug effects , Carcinogenesis/drug effects , DNA/drug effects , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HMGA1a Protein/chemistry , HMGA1a Protein/genetics , HMGA2 Protein/chemistry , HMGA2 Protein/genetics , High-Throughput Screening Assays , Humans , Suramin/isolation & purification , Suramin/pharmacology
12.
J Biomol Screen ; 13(7): 665-73, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18626112

ABSTRACT

Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors. A fluorescence polarization assay (FPA) employing fluorescein isothiocyanate (FITC)-labeled TR3-r8 peptide (FITC-TR3-r8) and Bcl-B protein was optimized, with nonfluorescent TR3-r8 serving to demonstrate reversible, competitive binding. Approximately 50,000 compounds were screened at 3.75 mg/L, yielding 145 reproducible hits with > or =50% FITC-TR3-r8 displacement (a confirmed hit rate of 0.29%). After dose-response analyses and counterscreening with an unrelated FITC-based FPA, 6 candidate compounds remained. Nuclear magnetic resonance (NMR) showed that 2 of these compounds bound Bcl-B, but not glutathione S-transferase (GST) control protein. One Bcl-B-binding compound was unable to displace FITClabeled BH3 peptides from Bcl-B, confirming a unique binding mechanism compared with traditional antagonists of antiapoptotic Bcl-2-family proteins. This compound bound Bcl-B with Kd 1.94 +/- 0.38 microM, as determined by isothermal titration calorimetry. Experiments using Bcl-B overexpressing HeLa cells demonstrated that this compound induced Bcl-B-dependent cell death. The current FPA represents a screen that can identify noncanonical inhibitors of Bcl-2-family proteins.


Subject(s)
DNA-Binding Proteins/chemistry , Drug Evaluation, Preclinical/methods , Fluorescence Polarization/methods , Peptides/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptors, Steroid/chemistry , Amino Acid Sequence , Calorimetry , Drug Evaluation, Preclinical/instrumentation , Fluorescein-5-isothiocyanate/pharmacology , Glutathione Transferase/metabolism , HeLa Cells , Humans , Kinetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Nuclear Receptor Subfamily 4, Group A, Member 1
13.
Clin Cancer Res ; 13(22 Pt 1): 6769-78, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-18006779

ABSTRACT

PURPOSE: Sensitize melanomas to apoptosis and inhibit their growth and metastatic potential by compounds that mimic the activities of activating transcription factor 2 (ATF2)-driven peptides. EXPERIMENTAL DESIGN: Small-molecule chemical library consisting of 3,280 compounds was screened to identify compounds that elicit properties identified for ATF2 peptide, including (a) sensitization of melanoma cells to apoptosis, (b) inhibition of ATF2 transcriptional activity, (c) activation of c-Jun NH(2)-terminal kinase (JNK) and c-Jun transcriptional activity, and (d) inhibition of melanoma growth and metastasis in mouse models. RESULTS: Two compounds, celastrol (CSL) and acetyl isogambogic acid, could, within a low micromolar range, efficiently elicit cell death in melanoma cells. Both compounds efficiently inhibit ATF2 transcriptional activities, activate JNK, and increase c-Jun transcriptional activities. Similar to the ATF2 peptide, both compounds require JNK activity for their ability to inhibit melanoma cell viability. Derivatives of CSL were identified as potent inducers of cell death in mouse and human melanomas. CSL and a derivative (CA19) could also efficiently inhibit growth of human and mouse melanoma tumors and reduce the number of lung metastases in syngeneic and xenograft mouse models. CONCLUSIONS: These studies show for the first time the effect of CSL and acetyl isogambogic acid on melanoma. These compounds elicit activities that resemble the well-characterized ATF2 peptide and may therefore offer new approaches for the treatment of this tumor type.


Subject(s)
Chromones/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Triterpenes/pharmacology , Activating Transcription Factor 2/antagonists & inhibitors , Animals , Cell Line, Tumor , Chromones/chemistry , Chromones/therapeutic use , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , MAP Kinase Kinase 4/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Pentacyclic Triterpenes , Proto-Oncogene Proteins c-jun/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Small Molecule Libraries/chemistry , Transcription, Genetic , Triterpenes/chemistry , Triterpenes/therapeutic use
14.
Assay Drug Dev Technol ; 16(7): 384-396, 2018 10.
Article in English | MEDLINE | ID: mdl-30251873

ABSTRACT

G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.


Subject(s)
High-Throughput Screening Assays/methods , Molecular Probes/analysis , Molecular Probes/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Ligands , Molecular Probes/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Cells, Cultured
15.
PLoS One ; 13(9): e0202436, 2018.
Article in English | MEDLINE | ID: mdl-30208056

ABSTRACT

Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.


Subject(s)
Aminoquinolines/therapeutic use , Antimalarials/therapeutic use , Drug Repositioning , Retinal Neovascularization/drug therapy , Aminoquinolines/chemistry , Aminoquinolines/pharmacokinetics , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Apelin/metabolism , Apelin Receptors/antagonists & inhibitors , Apelin Receptors/metabolism , Cell Line , Cell Proliferation/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Disease Models, Animal , Female , Humans , Lasers , Mice , Mice, Inbred C57BL , Retinal Neovascularization/pathology , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Tissue Distribution , Vascular Endothelial Growth Factor A/metabolism
16.
Mol Cancer Ther ; 5(7): 1774-82, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16891463

ABSTRACT

Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies. Such a multitargeted strategy has recently been validated in a number of preclinical and clinical studies using RTK inhibitors with broad target selectivity. SU14813, a small molecule identified from the same chemical library used to isolate sunitinib, has broad-spectrum RTK inhibitory activity through binding to and inhibition of VEGFR, PDGFR, KIT, and FLT3. In cellular assays, SU14813 inhibited ligand-dependent and ligand-independent proliferation, migration, and survival of endothelial cells and/or tumor cells expressing these targets. SU14813 inhibited VEGFR-2, PDGFR-beta, and FLT3 phosphorylation in xenograft tumors in a dose- and time-dependent fashion. The plasma concentration required for in vivo target inhibition was estimated to be 100 to 200 ng/mL. Used as monotherapy, SU14813 exhibited broad and potent antitumor activity resulting in regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. Treatment in combination with docetaxel significantly enhanced both the inhibition of primary tumor growth and the survival of the tumor-bearing mice compared with administration of either agent alone. In summary, SU14813 inhibited target RTK activity in vivo in association with reduction in angiogenesis, target RTK-mediated proliferation, and survival of tumor cells, leading to broad and potent antitumor efficacy. These data support the ongoing phase I clinical evaluation of SU14813 in advanced malignancies.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Morpholines/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation , Humans , Indoles/chemistry , Indoles/pharmacology , Mice , Morpholines/chemistry , Morpholines/pharmacology , Neoplasms/enzymology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Rats , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Tumor Cells, Cultured , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
17.
Mol Cancer Ther ; 2(11): 1085-92, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14617781

ABSTRACT

The hepatocyte growth factor/scatter factor (HGF/SF) receptor, Met, mediates various cellular responses on activation with its ligand, including proliferation, survival, motility, invasion, and tubular morphogenesis. Met expression is frequently up-regulated in sarcomas and carcinomas. Experimental evidence suggests that Met activation correlates with poor clinical outcome and the likelihood of metastasis. Therefore, inhibitors of Met tyrosine kinase may be useful for the treatment of a wide variety of cancers that have spread from the primary site. We have discovered potent and selective pyrrole-indolinone Met kinase inhibitors and characterized them for their ability to inhibit HGF/SF-induced cellular responses in vitro. These compounds inhibit HGF/SF-induced receptor phosphorylation in a dose-dependent manner. They also inhibit the HGF/SF-induced motility and invasion of epithelial and carcinoma cells. Therefore, these compounds represent a class of prototype small molecules that selectively inhibit the Met kinase and could lead to identification of compounds with potential therapeutic utility in treatment of cancers.


Subject(s)
Hepatocyte Growth Factor/antagonists & inhibitors , Hepatocyte Growth Factor/pharmacology , Neoplasm Invasiveness , Neoplasms/pathology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Binding Sites , Cell Division/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Humans , Indoles/pharmacology , Models, Molecular , Neoplasms/drug therapy , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Conformation , Proto-Oncogene Proteins c-met/chemistry , Pyrroles/pharmacology , Signal Transduction/drug effects
18.
Expert Opin Ther Targets ; 19(5): 589-603, 2015 May.
Article in English | MEDLINE | ID: mdl-25785645

ABSTRACT

OBJECTIVE: Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. RESEARCH DESIGN AND METHODS: Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. MAIN OUTCOME MEASURES: A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. CONCLUSIONS: The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.


Subject(s)
Drug Discovery/methods , Lewy Body Disease/drug therapy , Parkinson Disease/drug therapy , alpha-Synuclein/metabolism , Casein Kinase II/antagonists & inhibitors , Cell Line , Drug Design , High-Throughput Screening Assays , Humans , Lewy Body Disease/physiopathology , Models, Biological , Molecular Targeted Therapy , Parkinson Disease/physiopathology , Pilot Projects , Protein Multimerization , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
19.
PLoS One ; 10(6): e0129566, 2015.
Article in English | MEDLINE | ID: mdl-26075913

ABSTRACT

A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.


Subject(s)
Apoptosis/drug effects , Glutathione Reductase/metabolism , High-Throughput Screening Assays , Oxidative Stress , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Discovery , Glutathione/metabolism , Glutathione Reductase/antagonists & inhibitors , Humans , Mice , Reactive Oxygen Species , Small Molecule Libraries
20.
J Biomol Screen ; 19(1): 77-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23989452

ABSTRACT

Excess caloric consumption leads to triacylglyceride (TAG) accumulation in tissues that do not typically store fat, such as skeletal muscle. This ectopic accumulation alters cells, contributing to the pathogenesis of metabolic syndrome, a major health problem worldwide. We developed a 1536-well assay to measure intracellular TAG accumulation in differentiating H9c2 myoblasts. For this assay, cells were incubated with oleic acid to stimulate TAG accumulation prior to adding compounds. We used Nile red as a fluorescent dye to quantify TAG content with a microplate reader. The cell nuclei were counterstained with DAPI nuclear stain to assess cell count and filter cytotoxic compounds. In parallel, we developed an image-based assay in H9c2 cells to measure lipid accumulation levels via high-content analysis, exploiting the dual-emission spectra characteristic of Nile red staining of neutral and phospholipids. Using both approaches, we successfully screened ~227,000 compounds from the National Institutes of Health library. The screening data from the plate reader and IC50 values correlated with that from the Opera QEHS cell imager. The 1536-well plate reader assay is a powerful high-throughout screening platform to identify potent inhibitors of TAG accumulation to better understand the molecular pathways involved in lipid metabolism that lead to lipotoxicity.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Lipid Metabolism/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Triglycerides/metabolism , Cell Culture Techniques , Cell Line , Drug Discovery/methods , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL