Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Virol ; 96(2): e29423, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38285479

ABSTRACT

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , HIV Infections , Lymphoma , tat Gene Products, Human Immunodeficiency Virus , Humans , Down-Regulation , Herpesvirus 4, Human/genetics , HIV Infections/genetics , HIV-1/genetics , HLA-DRB1 Chains , tat Gene Products, Human Immunodeficiency Virus/genetics
2.
Mol Ther ; 31(4): 924-933, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36755493

ABSTRACT

The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci. Here, we discuss emerging experimental approaches of 3D genome editing that may prove useful in biomedicine.


Subject(s)
Gene Editing , Neoplasms , Humans , Genome, Human , Cell Nucleus , Neoplasms/genetics , Neoplasms/therapy , CRISPR-Cas Systems
3.
Nucleic Acids Res ; 50(8): 4389-4413, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35474385

ABSTRACT

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.


Subject(s)
Chromatin , Lung Neoplasms , Humans , Chromatin/genetics , Epigenome , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Heterochromatin , Phenotype , Lung Neoplasms/genetics
4.
Gene Ther ; 30(1-2): 167-171, 2023 02.
Article in English | MEDLINE | ID: mdl-32999452

ABSTRACT

B-cell lines and primary PBMCs are notoriously hard to transfect, thus making genome editing, ectopic gene expression, or gene silencing experiments particularly tedious. Here we propose a novel efficient and reproducible protocol for electrotransfection of lymphoblastoid, B-cell lymphoma, leukemia cell lines, and B cells from PBMCs. The proposed protocol requires neither costly equipment nor expensive reagents; it can be used with small or large plasmids. Transfection and viability rates of about 79% and 58%, respectively, have been routinely achieved by optimizing the salt concentration in the electrotransfection medium and the amount of plasmid used. A validation of the protocol was obtained via the generation of a TP53-/- RPMI8866 lymphoblastoid cell line which should prove useful in future hematological and blood cancer studies.


Subject(s)
Ectopic Gene Expression , Gene Editing , Humans , Gene Editing/methods , Transfection , Cell Line , Plasmids
5.
J Virol ; 96(1): e0150521, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34613791

ABSTRACT

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, reduces protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of nuclear localization signal (NLS) and nucleolar localization signal (NoLS) integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57) and found that these two supplementary functions (i.e., function of NLS and function of NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Nuclear Localization Signals , Protein Interaction Domains and Motifs , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Binding Sites , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Consensus Sequence , Evolution, Molecular , Host-Pathogen Interactions , Models, Molecular , Protein Binding , Protein Transport , Structure-Activity Relationship , Viral Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics
6.
J Med Virol ; 95(3): e28633, 2023 03.
Article in English | MEDLINE | ID: mdl-36866703

ABSTRACT

Burkitt lymphoma (BL) is a B cell malignancy associated with the Epstein-Barr virus (EBV). Most BL cases are characterized by a t(8;14) chromosomal translocation involving the MYC oncogene and the immunoglobulin heavy chain gene (IGH). The role of EBV in promoting this translocation remains largely unknown. Here we provide the experimental evidence that EBV reactivation from latency leads to an increase in the proximity between the MYC and IGH loci, otherwise located far away in the nuclear space both in B-lymphoblastoid cell lines and in patients' B-cells. Specific DNA damage within the MYC locus, followed by the MRE11-dependent DNA repair plays a role in this process. Using a CRISPR/Cas9-based B cell model to induce specific DNA double strand breaks in MYC and IGH loci, we have shown that the MYC-IGH proximity induced by EBV reactivation leads to an increased t(8;14) translocation frequency.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Humans , Herpesvirus 4, Human/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Genes, Immunoglobulin Heavy Chain
7.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674896

ABSTRACT

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Subject(s)
COVID-19 , Lung Injury , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , COVID-19/complications , Fibrosis , Plasminogen , Bleomycin/toxicity
8.
J Cell Physiol ; 237(8): 3328-3337, 2022 08.
Article in English | MEDLINE | ID: mdl-35621301

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease associated with ectopic expression of the DUX4 gene in skeletal muscle. Muscle degeneration in FSHD is accompanied by muscle tissue replacement with fat and connective tissue. Expression of DUX4 in myoblasts stimulates mesenchymal stem cells (MSC) migration via the CXCR4-CXCL12 axis. MSCs participate in adipose and connective tissue formation and can contribute to fibrosis. Here we studied the interaction between myoblasts and MSCs and the consequences of this interaction in the FSHD context. We used cell motility assays and coculture of MSCs with myoblasts to study their mutual effects on cell migration, differentiation, proliferation, and extracellular matrix formation. The growth medium conditioned by FSHD myoblasts stimulated MSCs migration 1.6-fold (p < 0.04) compared to nonconditioned medium. Blocking the CXCL12-CXCR4 axis with the CXCR4 inhibitor (AMD3100) or neutralizing antibodies to CXCL12 abolished this effect. FSHD myoblasts stimulated MSC proliferation 1.5-2 times (p < 0.05) compared to control myoblasts, while the presence of MSCs impaired myoblast differentiation. Under inflammatory conditions, medium conditioned by FSHD myoblasts stimulated collagen secretion by MSCs 2.2-fold as compared to the nonconditioned medium, p < 0.03. FSHD myoblasts attract MSCs via the CXCL12-CXCR4 axis, stimulate MSC proliferation and collagen secretion by MSCs. Interaction between MSCs and FSHD myoblasts accounts for several important aspects of FSHD pathophysiology. The CXCL12-CXCR4 axis may serve as a potential target to improve the state of the diseased muscles.


Subject(s)
Mesenchymal Stem Cells , Muscular Dystrophy, Facioscapulohumeral , Myoblasts , Cell Movement , Cells, Cultured , Chemokine CXCL12/metabolism , Homeodomain Proteins/genetics , Humans , Mesenchymal Stem Cells/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/metabolism , Phenotype , Receptors, CXCR4/metabolism
9.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557396

ABSTRACT

HIV-1 infects T cells, but the most frequent AIDS-related lymphomas are of B-cell origin. Molecular mechanisms of HIV-1-induced oncogenic transformation of B cells remain largely unknown. HIV-1 Tat protein may participate in this process by penetrating and regulating gene expression in B cells. Both immune and cancer cells can reprogram communications between extracellular signals and intracellular signaling pathways via the Akt/mTORC1 pathway, which plays a key role in the cellular response to various stimuli including viral infection. Here, we investigated the role of HIV-1 Tat on the modulation of the Akt/mTORC1 pathway in B cells. We found that HIV-1 Tat activated the Akt/mTORC1 signaling pathway; this leads to aberrant activation of activation-induced cytidine deaminase (AICDA) due to inhibition of the AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies.


Subject(s)
B-Lymphocytes/pathology , Cytidine Deaminase/metabolism , DNA Damage , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Cytidine Deaminase/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Reactive Oxygen Species/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcriptional Activation , tat Gene Products, Human Immunodeficiency Virus/genetics
10.
Int J Cancer ; 146(10): 2666-2679, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31603989

ABSTRACT

HIV infected people are at higher risk of developing cancer, although it is globally diminished in the era of highly active antiretroviral treatment (HAART). Recently, antioncogenic properties of some HAART drugs were discovered. We discuss the role of HAART in the prevention and improvement of treatment outcomes of cancers in HIV-infected people. We describe different trends in HAART-cancer relationships: cancer-predisposing as well as cancer-preventing. We cover the roles of particular drug regimens in cancer prevention. We also describe the causes of cancer treatment with HAART drugs in HIV-negative people, including ongoing clinical studies that may directly point to a possible independent anti-oncogenic activity of HAART drugs. We conclude that despite potent antioncogenic activities of every class of HAART drugs reported in preclinical models, the evidence to date indicates that their independent clinical impact in HIV-infected people is limited. Improved cancer prevention strategies besides HAART are needed to reduce HIV-cancer-related mortality.


Subject(s)
Antiretroviral Therapy, Highly Active , HIV Infections/complications , HIV Infections/drug therapy , Neoplasms/complications , Neoplasms/drug therapy , Anti-HIV Agents/therapeutic use , HIV-1 , Humans
11.
Rev Med Virol ; 29(2): e2031, 2019 03.
Article in English | MEDLINE | ID: mdl-30609200

ABSTRACT

Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.


Subject(s)
HIV Infections/virology , HIV-1/growth & development , Proviruses/growth & development , tat Gene Products, Human Immunodeficiency Virus/metabolism , Host-Pathogen Interactions , Humans , Protein Domains , Protein Processing, Post-Translational
12.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1293-1311, 2018 09.
Article in English | MEDLINE | ID: mdl-29936127

ABSTRACT

Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.


Subject(s)
DNA Damage , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Damage/drug effects , DNA Repair/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction/drug effects
13.
J Cell Physiol ; 234(9): 15678-15685, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30701532

ABSTRACT

Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.

14.
J Cell Biochem ; 120(3): 4472-4484, 2019 03.
Article in English | MEDLINE | ID: mdl-30260032

ABSTRACT

Enhanced glucose uptake by cancer cells was demonstrated in many studies in vitro and in vivo. Glycolysis is one of the main ways of obtaining energy in hypoxia conditions. However, in addition to energy exchange, carbohydrates are also necessary for the posttranslational modification of the protein molecules. Cancer cells are often characterized by an enhanced expression of different glycoproteides. Correct glycosylation defines the structure and activity of such molecules. We demonstrated that under the same cultivation conditions, the intensity of glycosylation does not depend on the total number of potential O-glycosylation sites in one molecule. As a model for the investigation, the tandem repeat region (region with variable number of tandem repeats) of the human mucin MUC1, in which each of the repeats carries four potential O-glycosylation sites, was used. An increase of the tandem repeat number in the recombinant protein did not lead to a proportional increase in the level of sLea glycosides. A consequence of this was a reduction in the number of recombinant proteins associated with the cytoplasmic membrane at an overall high expression level. Prolongation of the cultivation duration led to a reduction in the expression level of the recombinant proteins by up to 30% of the initial level, and the intensity of this reduction was in a direct ratio to the number of tandem repeats in the protein molecule.


Subject(s)
Down-Regulation , Mucin-1 , Repetitive Sequences, Amino Acid , Cell Line , Glycosylation , Humans , Mucin-1/biosynthesis , Mucin-1/genetics
15.
Chromosoma ; 127(4): 529-537, 2018 12.
Article in English | MEDLINE | ID: mdl-30291421

ABSTRACT

Nuclear bodies are relatively immobile organelles. Here, we investigated the mechanisms underlying their movement using experimentally induced interphase prenucleolar bodies (iPNBs). Most iPNBs demonstrated constrained diffusion, exhibiting infrequent fusions with other iPNBs and nucleoli. Fusion events were actin-independent and appeared to be the consequence of stochastic collisions between iPNBs. Most iPNBs were surrounded by condensed chromatin, while fusing iPNBs were usually found in a single heterochromatin-delimited compartment ("cage"). The experimentally induced over-condensation of chromatin significantly decreased the frequency of iPNB fusion. Thus, the data obtained indicate that the mobility of nuclear bodies is restricted by heterochromatin.


Subject(s)
Cell Nucleus Structures/metabolism , Heterochromatin/metabolism , Cell Nucleus Structures/genetics , Chromatin/metabolism , HeLa Cells , Humans , Interphase , Time-Lapse Imaging
16.
Int J Cancer ; 152(7): 1288-1289, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36510743
17.
Chromosoma ; 126(1): 59-69, 2017 02.
Article in English | MEDLINE | ID: mdl-27286720

ABSTRACT

The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.


Subject(s)
Eukaryota/genetics , Genome , Genomics , Animals , Chromatin/chemistry , Chromatin/genetics , Epigenesis, Genetic , Epigenomics/methods , Genomics/methods , Humans , Structure-Activity Relationship
18.
Mol Biol Evol ; 34(6): 1492-1504, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28333290

ABSTRACT

The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and ß-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and ß-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates.


Subject(s)
Chromatin/genetics , Globins/genetics , Molecular Conformation , Animals , Biological Evolution , Birds/genetics , Chromosomes/genetics , Evolution, Molecular , Genome , Mammals/genetics , Multigene Family/genetics , Zebrafish/genetics , alpha-Globins/genetics , beta-Globins/genetics
19.
J Cell Sci ; 129(24): 4509-4520, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27875271

ABSTRACT

Nuclear bodies are membraneless organelles that play important roles in genome functioning. A specific type of nuclear bodies known as interphase prenucleolar bodies (iPNBs) are formed in the nucleoplasm after hypotonic stress from partially disassembled nucleoli. iPNBs are then disassembled, and the nucleoli are reformed simultaneously. Here, we show that diffusion of B23 molecules (also known as nucleophosmin, NPM1) from iPNBs, but not fusion of iPNBs with the nucleoli, contributes to the transfer of B23 from iPNBs to the nucleoli. Maturation of pre-ribosomal RNAs (rRNAs) and the subsequent outflow of mature rRNAs from iPNBs led to the disassembly of iPNBs. We found that B23 transfer was dependent on the synthesis of pre-rRNA molecules in nucleoli; these pre-rRNA molecules interacted with B23 and led to its accumulation within nucleoli. The transfer of B23 between iPNBs and nucleoli was accomplished through a nucleoplasmic pool of B23, and increased nucleoplasmic B23 content retarded disassembly, whereas B23 depletion accelerated disassembly. Our results suggest that iPNB disassembly and nucleolus assembly might be coupled through RNA-dependent exchange of nucleolar proteins, creating a highly dynamic system with long-distance correlations between spatially distinct processes.


Subject(s)
Intranuclear Inclusion Bodies/metabolism , RNA/metabolism , Adenosine Triphosphate/metabolism , Cell Nucleolus/metabolism , Diffusion , HeLa Cells , Humans , Interphase , Nucleophosmin , RNA Processing, Post-Transcriptional , Stress, Physiological
20.
Cell Mol Life Sci ; 74(19): 3439-3449, 2017 10.
Article in English | MEDLINE | ID: mdl-28444416

ABSTRACT

Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.


Subject(s)
DNA Damage , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Neuromuscular Diseases/genetics , Oxidative Stress , Aging , Animals , Antioxidants/therapeutic use , DNA/genetics , DNA Damage/drug effects , DNA Repair/drug effects , Humans , Muscle Development/drug effects , Muscle, Skeletal/metabolism , Neuromuscular Diseases/drug therapy , Neuromuscular Diseases/pathology , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL