Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Nucleic Acids Res ; 50(8): 4389-4413, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35474385

ABSTRACT

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.


Subject(s)
Chromatin , Lung Neoplasms , Humans , Chromatin/genetics , Epigenome , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Heterochromatin , Phenotype , Lung Neoplasms/genetics
2.
J Virol ; 96(1): e0150521, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34613791

ABSTRACT

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, reduces protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of nuclear localization signal (NLS) and nucleolar localization signal (NoLS) integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57) and found that these two supplementary functions (i.e., function of NLS and function of NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Nuclear Localization Signals , Protein Interaction Domains and Motifs , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Binding Sites , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Consensus Sequence , Evolution, Molecular , Host-Pathogen Interactions , Models, Molecular , Protein Binding , Protein Transport , Structure-Activity Relationship , Viral Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674896

ABSTRACT

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Subject(s)
COVID-19 , Lung Injury , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , COVID-19/complications , Fibrosis , Plasminogen , Bleomycin/toxicity
4.
J Cell Physiol ; 237(8): 3328-3337, 2022 08.
Article in English | MEDLINE | ID: mdl-35621301

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease associated with ectopic expression of the DUX4 gene in skeletal muscle. Muscle degeneration in FSHD is accompanied by muscle tissue replacement with fat and connective tissue. Expression of DUX4 in myoblasts stimulates mesenchymal stem cells (MSC) migration via the CXCR4-CXCL12 axis. MSCs participate in adipose and connective tissue formation and can contribute to fibrosis. Here we studied the interaction between myoblasts and MSCs and the consequences of this interaction in the FSHD context. We used cell motility assays and coculture of MSCs with myoblasts to study their mutual effects on cell migration, differentiation, proliferation, and extracellular matrix formation. The growth medium conditioned by FSHD myoblasts stimulated MSCs migration 1.6-fold (p < 0.04) compared to nonconditioned medium. Blocking the CXCL12-CXCR4 axis with the CXCR4 inhibitor (AMD3100) or neutralizing antibodies to CXCL12 abolished this effect. FSHD myoblasts stimulated MSC proliferation 1.5-2 times (p < 0.05) compared to control myoblasts, while the presence of MSCs impaired myoblast differentiation. Under inflammatory conditions, medium conditioned by FSHD myoblasts stimulated collagen secretion by MSCs 2.2-fold as compared to the nonconditioned medium, p < 0.03. FSHD myoblasts attract MSCs via the CXCL12-CXCR4 axis, stimulate MSC proliferation and collagen secretion by MSCs. Interaction between MSCs and FSHD myoblasts accounts for several important aspects of FSHD pathophysiology. The CXCL12-CXCR4 axis may serve as a potential target to improve the state of the diseased muscles.


Subject(s)
Mesenchymal Stem Cells , Muscular Dystrophy, Facioscapulohumeral , Myoblasts , Cell Movement , Cells, Cultured , Chemokine CXCL12/metabolism , Homeodomain Proteins/genetics , Humans , Mesenchymal Stem Cells/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/metabolism , Phenotype , Receptors, CXCR4/metabolism
5.
Rev Med Virol ; 29(2): e2031, 2019 03.
Article in English | MEDLINE | ID: mdl-30609200

ABSTRACT

Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.


Subject(s)
HIV Infections/virology , HIV-1/growth & development , Proviruses/growth & development , tat Gene Products, Human Immunodeficiency Virus/metabolism , Host-Pathogen Interactions , Humans , Protein Domains , Protein Processing, Post-Translational
6.
Chromosoma ; 127(4): 529-537, 2018 12.
Article in English | MEDLINE | ID: mdl-30291421

ABSTRACT

Nuclear bodies are relatively immobile organelles. Here, we investigated the mechanisms underlying their movement using experimentally induced interphase prenucleolar bodies (iPNBs). Most iPNBs demonstrated constrained diffusion, exhibiting infrequent fusions with other iPNBs and nucleoli. Fusion events were actin-independent and appeared to be the consequence of stochastic collisions between iPNBs. Most iPNBs were surrounded by condensed chromatin, while fusing iPNBs were usually found in a single heterochromatin-delimited compartment ("cage"). The experimentally induced over-condensation of chromatin significantly decreased the frequency of iPNB fusion. Thus, the data obtained indicate that the mobility of nuclear bodies is restricted by heterochromatin.


Subject(s)
Cell Nucleus Structures/metabolism , Heterochromatin/metabolism , Cell Nucleus Structures/genetics , Chromatin/metabolism , HeLa Cells , Humans , Interphase , Time-Lapse Imaging
7.
Chromosoma ; 126(1): 59-69, 2017 02.
Article in English | MEDLINE | ID: mdl-27286720

ABSTRACT

The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.


Subject(s)
Eukaryota/genetics , Genome , Genomics , Animals , Chromatin/chemistry , Chromatin/genetics , Epigenesis, Genetic , Epigenomics/methods , Genomics/methods , Humans , Structure-Activity Relationship
8.
Mol Biol Evol ; 34(6): 1492-1504, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28333290

ABSTRACT

The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and ß-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and ß-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates.


Subject(s)
Chromatin/genetics , Globins/genetics , Molecular Conformation , Animals , Biological Evolution , Birds/genetics , Chromosomes/genetics , Evolution, Molecular , Genome , Mammals/genetics , Multigene Family/genetics , Zebrafish/genetics , alpha-Globins/genetics , beta-Globins/genetics
9.
J Cell Sci ; 129(24): 4509-4520, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27875271

ABSTRACT

Nuclear bodies are membraneless organelles that play important roles in genome functioning. A specific type of nuclear bodies known as interphase prenucleolar bodies (iPNBs) are formed in the nucleoplasm after hypotonic stress from partially disassembled nucleoli. iPNBs are then disassembled, and the nucleoli are reformed simultaneously. Here, we show that diffusion of B23 molecules (also known as nucleophosmin, NPM1) from iPNBs, but not fusion of iPNBs with the nucleoli, contributes to the transfer of B23 from iPNBs to the nucleoli. Maturation of pre-ribosomal RNAs (rRNAs) and the subsequent outflow of mature rRNAs from iPNBs led to the disassembly of iPNBs. We found that B23 transfer was dependent on the synthesis of pre-rRNA molecules in nucleoli; these pre-rRNA molecules interacted with B23 and led to its accumulation within nucleoli. The transfer of B23 between iPNBs and nucleoli was accomplished through a nucleoplasmic pool of B23, and increased nucleoplasmic B23 content retarded disassembly, whereas B23 depletion accelerated disassembly. Our results suggest that iPNB disassembly and nucleolus assembly might be coupled through RNA-dependent exchange of nucleolar proteins, creating a highly dynamic system with long-distance correlations between spatially distinct processes.


Subject(s)
Intranuclear Inclusion Bodies/metabolism , RNA/metabolism , Adenosine Triphosphate/metabolism , Cell Nucleolus/metabolism , Diffusion , HeLa Cells , Humans , Interphase , Nucleophosmin , RNA Processing, Post-Transcriptional , Stress, Physiological
10.
Cell Mol Life Sci ; 74(19): 3439-3449, 2017 10.
Article in English | MEDLINE | ID: mdl-28444416

ABSTRACT

Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.


Subject(s)
DNA Damage , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Neuromuscular Diseases/genetics , Oxidative Stress , Aging , Animals , Antioxidants/therapeutic use , DNA/genetics , DNA Damage/drug effects , DNA Repair/drug effects , Humans , Muscle Development/drug effects , Muscle, Skeletal/metabolism , Neuromuscular Diseases/drug therapy , Neuromuscular Diseases/pathology , Oxidative Stress/drug effects
11.
Cell Mol Life Sci ; 73(3): 589-601, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26507246

ABSTRACT

Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.


Subject(s)
Gene Expression Regulation, Viral , tat Gene Products, Human Immunodeficiency Virus/physiology , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , HIV Infections/complications , Humans , Models, Molecular , Nuclear Envelope/metabolism , Nuclear Localization Signals , tat Gene Products, Human Immunodeficiency Virus/chemistry
12.
J Cell Physiol ; 231(1): 62-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26218298

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is a neuromuscular disease with a prevalence that could reach 1 in 8,000 characterized by progressive asymmetric muscle weakness. Myoblasts isolated from FSHD muscles exhibit morphological differentiation defects and show a distinct transcription profile. These abnormalities may be linked to the muscle weakness in FSHD patients. We have tested whether fusion of FSHD myoblasts with primary myoblasts isolated from healthy individuals could correct the differentiation defects. Our results show that the number of hybrid myotubes with normal phenotype increased with the percentage of normal myoblasts initially cultured. We demonstrated that a minimum of 50% of normal nuclei is required for a phenotypic correction of the FSHD phenotype. Moreover, transcriptomic profiles of phenotypically corrected hybrid myotubes showed that the expression of deregulated genes in FSHD myotubes became almost normal. The number of deregulated pathways also decreased from 39 in FSHD myotubes to one in hybrid myotubes formed with 40% FSHD and 60% normal myoblasts. We thus propose that while phenotypical and functional correction of FSHD is feasible, it requires more than 50% of normal myoblasts, it creates limitations for cell therapy in the FSHD context.


Subject(s)
Cell Differentiation/physiology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts/cytology , Adult , Cell Differentiation/genetics , Cells, Cultured , Female , Humans , Male , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phenotype , Young Adult
13.
J Cell Biochem ; 117(7): 1506-10, 2016 07.
Article in English | MEDLINE | ID: mdl-26873538

ABSTRACT

The immunoglobulin heavy chain (IGH) locus is submitted to intra-chromosomal DNA breakages and rearrangements during normal B cell differentiation that create a risk for illegitimate inter-chromosomal translocations leading to a variety of B-cell malignancies. In most Burkitt's and Mantle Cell lymphomas, specific chromosomal translocations juxtapose the IGH locus with a CMYC or Cyclin D1 (CCND1) gene, respectively. 3D-fluorescence in situ hybridization was performed on normal peripheral B lymphocytes induced to mature in vitro from a naive state to the stage where they undergo somatic hypermutation (SHM) and class switch recombination (CSR). The CCND1 genes were found very close to the IGH locus in naive B cells and further away after maturation. In contrast, the CMYC alleles became localized closer to an IGH locus at the stage of SHM/CSR. The colocalization observed between the two oncogenes and the IGH locus at successive stages of B-cell differentiation occurred in the immediate vicinity of the nucleolus, consistent with the known localization of the RAGs and AID enzymes whose function has been demonstrated in IGH physiological rearrangements. We propose that the chromosomal events leading to Mantle Cell lymphoma and Burkitt's lymphoma are favored by the colocalization of CCND1 and CMYC with IGH at the time the concerned B cells undergo VDJ recombination or SHM/CSR, respectively. J. Cell. Biochem. 117: 1506-1510, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
B-Lymphocytes/metabolism , Cell Differentiation/physiology , Cyclin D1/metabolism , Gene Rearrangement, B-Lymphocyte, Heavy Chain/physiology , Immunoglobulin Heavy Chains/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Alleles , B-Lymphocytes/cytology , Cyclin D1/genetics , Genetic Loci/physiology , Humans , Immunoglobulin Heavy Chains/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-myc/genetics
14.
Histochem Cell Biol ; 145(4): 475-83, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26860865

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy linked to a deletion of a subset of D4Z4 macrosatellite repeats accompanied by a chromatin relaxation of the D4Z4 array on chromosome 4q. In vitro, FSHD primary myoblasts show altered expression of oxidative-related genes and are more susceptible to oxidative stress. Double homeobox 4 (DUX4) gene, encoded within each D4Z4 unit, is normally transcriptionally silenced but is found aberrantly expressed in skeletal muscles of FSHD patients. Its expression leads to a deregulation of DUX4 target genes including those implicated in redox balance. Here, we assessed DNA repair efficiency of oxidative DNA damage in FSHD myoblasts and DUX4-transfected myoblasts. We have shown that the DNA repair activity is altered neither in FSHD myoblasts nor in immortalized human myoblasts transiently expressing DUX4. DNA damage caused by moderate doses of an oxidant is efficiently repaired while FSHD myoblasts exposed for 24 h to high levels of oxidative stress accumulated more DNA damage than normal myoblasts, suggesting that FSHD myoblasts remain more vulnerable to oxidative stress at high doses of oxidants.


Subject(s)
DNA Damage , DNA Repair , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Oxidative Stress , Cells, Cultured , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/pathology , Oxidative Stress/drug effects
15.
Blood ; 123(13): 2044-53, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24452204

ABSTRACT

In mantle cell lymphoma (MCL), one allele of the cyclin D1 (Ccnd1) gene is translocated from its normal localization on chromosome 11 to chromosome 14. This is considered as the crucial event in the transformation process of a normal naive B-cell; however, the actual molecular mechanism leading to Ccnd1 activation remains to be deciphered. Using a combination of three-dimensional and immuno-fluorescence in situ hybridization experiments, the radial position of the 2 Ccnd1 alleles was investigated in MCL-derived cell lines and malignant cells from affected patients. The translocated Ccnd1 allele was observed significantly more distant from the nuclear membrane than its nontranslocated counterpart, with a very high proportion of IgH-Ccnd1 chromosomal segments localized next to a nucleolus. These perinucleolar areas were found to contain active RNA polymerase II (PolII) clusters. Nucleoli are rich in nucleolin, a potent transcription factor that we found to bind sites within the Ccnd1 gene specifically in MCL cells and to activate Ccnd1 transcription. We propose that the Ccnd1 transcriptional activation in MCL cells relates to the repositioning of the rearranged IgH-Ccnd1-carrying chromosomal segment in a nuclear territory with abundant nucleolin and active PolII molecules. Similar transforming events could occur in Burkitt and other B-cell lymphomas.


Subject(s)
Cell Nucleolus/metabolism , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Active Transport, Cell Nucleus/physiology , CCCTC-Binding Factor , Cell Line, Tumor , Cyclin D1/genetics , Genes, Neoplasm , HeLa Cells , Humans , Protein Transport , Repressor Proteins/metabolism , Nucleolin
16.
Cancer Cell Int ; 16: 36, 2016.
Article in English | MEDLINE | ID: mdl-27158244

ABSTRACT

BACKGROUND: Temozolomide (TMZ) is a first-line drug for the treatment of glioblastoma. Long-term TMZ-treated tumour cells acquire TMZ resistance by profound reprogramming of the transcriptome, proteome, kinome, metabolism, and demonstrate versatile and opposite changes in proliferation, invasion, in vivo growth, and drug cross-resistance. We hypothesized that chromosomal instability (CIN) may be implicated in the generation of TMZ-driven molecular and phenotype diversity. CIN refers to the rate (cell-to-cell variability) with which whole chromosomes or portions of chromosomes are gained or lost. METHODS: The long-term TMZ-treated cell lines were established in vitro (U251TMZ1, U251TMZ2, T98GTMZ and C6TMZ) and in vivo (C6R2TMZ). A glioma model was achieved by the intracerebral stereotactic implantation of C6 cells into the striatum region of rats. Genomic and phenotypic changes were analyzed by conventional cytogenetics, array CGH, trypan blue exclusion assay, soft agar colony formation assay, scratch wound healing assay, transwell invasion assay, quantitative polymerase chain reaction, and Western blotting. RESULTS: Long-term TMZ treatment increased CIN-mediated genomic diversity in U251TMZ1, U251TMZ2 and T98GTMZ cells but reduced it in C6TMZ and C6R2TMZ cells. U251TMZ1 and U251TMZ2 cell lines, established in parallel with a similar treatment procedure with the only difference in the duration of treatment, underwent individual phenotypic changes. U251TMZ1 had a reduced proliferation and invasion but increased migration, whereas U251TMZ2 had an enhanced proliferation and invasion but no changes in migration. U251TMZ1 and U251TMZ2 cells demonstrated individual patterns in expression/activation of signal transduction proteins (e.g., MDM2, p53, ERK, AKT, and ASK). C6TMZ and C6R2TMZ cells had lower proliferation, colony formation efficiency and migration, whereas T98GTMZ cells had increased colony formation efficiency without any changes in proliferation, migration, and invasion. TMZ-treated lines demonstrated a differential response to a reduction in glucose concentration and an increased resistance to TMZ re-challenge but not temsirolimus (mTOR inhibitor) or U0126 (MEK1/2 inhibitor) treatment. CONCLUSION: Long-term TMZ treatment selected resistant genotype-phenotype variants or generated novel versatile phenotypes by increasing CIN. An increase of resistance to TMZ re-challenge seems to be the only predictable trait intrinsic to all long-term TMZ-treated tumour cells. Changes in genomic diversity may be responsible for heterogeneous phenotypes of TMZ-treated cell lines.

17.
Invest New Drugs ; 33(6): 1280-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26423245

ABSTRACT

A vast majority of lymphomas and leukaemias are results of translocations. These translocations produce various genetic and epigenetic changes that lead to oncogenesis. This opens an opportunity to use a relatively new class of anti-cancer agents, inhibitors of histone deacetylases (HDACi) to target lymphoid malignancies. Surprisingly, the rational basis for treatment of lymphomas with HDACi is far from clear, although some positive results have been obtained. Here we analyze the effect of histone deacetylase (HDAC) inhibitors on lymphoid malignancies.


Subject(s)
Antineoplastic Agents/therapeutic use , Epigenesis, Genetic/genetics , Histone Deacetylase Inhibitors/therapeutic use , Lymphoma/drug therapy , Lymphoma/genetics , Animals , Antineoplastic Agents/pharmacology , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Lymphoma/diagnosis
18.
J Cell Mol Med ; 18(2): 208-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24341522

ABSTRACT

Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-related genes among the genes differentially expressed in FSHD. The analysis has shown that gene expression profiles of FSHD myoblasts and myotubes resemble that of Ewing's sarcoma more than that of other cancer types tested. This is the first study demonstrating a similarity between FSHD and cancer cell expression profiles, a finding that might indicate the existence of a common step in the pathogenesis of these two diseases.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , Neoplasm Proteins/genetics , Sarcoma, Ewing/genetics , Transcriptome , Chromosome Aberrations , Chromosomes, Human, Pair 4 , Epigenesis, Genetic , Gene Expression , Gene Expression Profiling , Humans , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/pathology , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
19.
J Biol Chem ; 288(49): 34989-5002, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24145033

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Adult , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Female , Gene Expression Profiling , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Muscle Development/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/pathology , Up-Regulation , Young Adult
20.
Mol Cancer ; 13: 249, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25404525

ABSTRACT

Chromosomal translocations are a major cause of cancer. At the same time, the mechanisms that lead to specific chromosomal translocations that associate different gene regions remain largely unknown. Translocations are induced by double strand breaks (DSBs) in DNA. Here we review recent data on the mechanisms of generation, mobility and repair of DSBs and stress the importance of the nuclear organization in this process.


Subject(s)
DNA Repair/genetics , DNA/genetics , RNA, Double-Stranded/genetics , Translocation, Genetic/genetics , DNA Breaks, Double-Stranded , Humans , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL