Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 110(36): E3445-54, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23946421

ABSTRACT

Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-ƅ) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Peptides/therapeutic use , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Binding, Competitive , Cell Line, Tumor , Crystallography, X-Ray , Female , HCT116 Cells , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Peptides/chemistry , Peptides/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/therapeutic use , Protein Binding , Protein Conformation , Protein Structure, Secondary , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Rats , Rats, Long-Evans , Xenograft Model Antitumor Assays
2.
Proc Natl Acad Sci U S A ; 109(29): 11788-93, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22745160

ABSTRACT

Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.


Subject(s)
Apoptosis/physiology , Hydantoins/pharmacology , Models, Molecular , Nuclear Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Cycle Proteins , Cell Line, Tumor , Crystallization , Dimerization , Fluorescence Resonance Energy Transfer , Humans , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins c-mdm2/chemistry , Signal Transduction/drug effects , Signal Transduction/physiology , Tetrazolium Salts , Thiazoles
3.
Proc Natl Acad Sci U S A ; 109(8): 2724-9, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22003129

ABSTRACT

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/classification , Breast Neoplasms/drug therapy , Signal Transduction/drug effects , Breast Neoplasms/genetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Gene Dosage/genetics , Humans , Models, Biological , Signal Transduction/genetics , Transcription, Genetic/drug effects
4.
Bioorg Med Chem ; 22(15): 4001-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24997575

ABSTRACT

The field of small-molecule inhibitors of protein-protein interactions is rapidly advancing and the specific area of inhibitors of the p53/MDM2 interaction is a prime example. Several groups have published on this topic and multiple compounds are in various stages of clinical development. Building on the strength of the discovery of RG7112, a Nutlin imidazoline-based compound, and RG7388, a pyrrolidine-based compound, we have developed additional scaffolds that provide opportunities for future development. Here, we report the discovery and optimization of a highly potent and selective series of spiroindolinone small-molecule MDM2 inhibitors, culminating in RO8994.


Subject(s)
Indoles/chemistry , Indolizidines/chemistry , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Spiro Compounds/chemistry , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Humans , Imidazolines/chemistry , Indoles/therapeutic use , Indoles/toxicity , Indolizidines/therapeutic use , Indolizidines/toxicity , Molecular Dynamics Simulation , Neoplasms/drug therapy , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/chemistry , Spiro Compounds/therapeutic use , Spiro Compounds/toxicity , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , para-Aminobenzoates/chemistry
5.
Cancer ; 119(5): 1013-22, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23165797

ABSTRACT

BACKGROUND: Relatively few sarcomas harbor TP53 (tumor protein p53) mutations, but in many cases, amplification of MDM2 (murine double minute 2) effectively inactivate p53. The p53 pathway activity can also be affected by normal genetic variation. METHODS: The mutation status of TP53 and expression of MDM2, TP53, and their genetic variants SNP309 and R72P (Arg72Pro) were investigated in 125 sarcoma patient samples and 18 sarcoma cell lines. Association of the different genotypes and gene aberrations with chemotherapy response and survival, as well as response to MDM2 antagonists in vitro was evaluated. RESULTS: Twenty-two percent of the tumors had mutant TP53 and 20% MDM2 gene amplification. Patients with wild-type TP53 (TP53(Wt) ) tumors had improved survival (P < .001) and TP53(Wt) was an independent prognostic factor (hazard ratio = 0.41; 95% confidence interval = 0.23-0.74; P = .03). Interestingly, there was a trend toward longer time to progression after chemotherapy for tumors with the apoptosis-prone p53 variant R72 (P = .07), which was strongest with doxorubicin/ifosfamide-based regimens (P = .01). Liposarcomas had low R72 frequency (33% versus 56%), but increased levels of MDM2 and MDM4 (51% and 11%, P < .001). MDM2 overexpression on a TP53(Wt) background predicted better response to MDM2 antagonist Nutlin-3a, irrespective of R72P or SNP309 status. CONCLUSIONS: Improved survival after chemotherapy was found in patients with TP53(Wt) tumors harboring the R72 variant. MDM2 overexpression in TP53(Wt) tumors predicted good response to MDM2 antagonists, irrespective of R72P or SNP309 status. Thus, detailed TP53 and MDM2 genotype analyses prior to systemic therapy are recommended.


Subject(s)
Genes, p53 , Proto-Oncogene Proteins c-mdm2/genetics , Sarcoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Child , Female , Genotype , Humans , Imidazoles/therapeutic use , Male , Middle Aged , Mutation , Piperazines/therapeutic use , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Sarcoma/drug therapy , Sarcoma/mortality , Treatment Outcome , Young Adult
6.
Lancet Oncol ; 13(11): 1133-40, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23084521

ABSTRACT

BACKGROUND: We report a proof-of-mechanism study of RG7112, a small-molecule MDM2 antagonist, in patients with chemotherapy-naive primary or relapsed well-differentiated or dedifferentiated MDM2-amplified liposarcoma who were eligible for resection. METHODS: Patients with well-differentiated or dedifferentiated liposarcoma were enrolled at four centres in France. Patients received up to three 28-day neoadjuvant treatment cycles of RG7112 1440 mg/m(2) per day for 10 days. If a patient progressed at any point after the first cycle, the lesion was resected or, if unresectable, an end-of-study biopsy was done. The primary endpoint was to assess markers of RG7112-dependent MDM2 inhibition and P53 pathway activation (P53, P21, MDM2, Ki-67, macrophage inhibitory cytokine-1 [MIC-1], and apoptosis). All analyses were per protocol. This trial is registered with EudraCT, number 2009-015522-10. RESULTS: Between June 3, and Dec 14, 2010, 20 patients were enrolled and completed pretreatment and day 8 biopsies. 18 of 20 patients had TP53 wild-type tumours and two carried missense TP53 mutations. 14 of 17 assessed patients had MDM2 gene amplification. Compared with baseline, P53 and P21 concentrations, assessed by immunohistochemistry, had increased by a median of 4Ā·86 times (IQR 4Ā·38-7Ā·97; p=0Ā·0001) and 3Ā·48 times (2Ā·05-4Ā·09; p=0Ā·0001), respectively, at day 8 (give or take 2 days). At the same timepoint, relative MDM2 mRNA expression had increased by a median of 3Ā·03 times (1Ā·23-4Ā·93; p=0Ā·003) that at baseline. The median change from baseline for Ki-67-positive tumour cells was -5Ā·05% (IQR -12Ā·55 to 0Ā·05; p=0Ā·01). Drug exposure correlated with blood concentrations of MIC-1 (p<0Ā·0001) and haematological toxicity. One patient had a confirmed partial response and 14 had stable disease. All patients experienced at least one adverse event, mostly nausea (14 patients), vomiting (11 patients), asthenia (nine patients), diarrhoea (nine patients), and thrombocytopenia (eight patients). There were 12 serious adverse events in eight patients, the most common of which were neutropenia (six patients) and thrombocytopenia (three patients). DISCUSSION: MDM2 inhibition activates the P53 pathway and decreases cell proliferation in MDM2-amplified liposarcoma. This study suggests that it is feasible to undertake neoadjuvant biopsy-driven biomarker studies in liposarcoma. FUNDING: F Hoffmann-La Roche.


Subject(s)
Antineoplastic Agents , Liposarcoma/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53 , Adult , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Apoptosis , Cell Differentiation , Cell Proliferation/drug effects , Disease-Free Survival , Female , Growth Differentiation Factor 15/metabolism , Humans , Male , Middle Aged , Mutation , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Young Adult
7.
Aging (Albany NY) ; 15(2): 492-512, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36656721

ABSTRACT

Over half of all cancer patients undergo radiation therapy but there is an unmet need for more efficacious combination strategies with molecular targeted drugs. DNA damage response has emerged as an important intervention point for improving anti-tumor effects of radiation and several inhibitors are currently in development. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of cellular response to DNA double strand breaks and a potential target for radiosensitization. We recently reported two new potent and selective ATM inhibitors, M3541 and M4076, that effectively sensitize cancer cells to radiation and regress human xenografts in clinically relevant animal models. Here, we dive deeper into the cellular events in irradiated cancer cells exposed to ATM inhibitors. Suppression of ATM activity inhibited radiation-induced ATM signaling and abrogated G1 checkpoint activation resulting in enhanced cell death. Our data indicated that entry into mitosis with gross structural abnormalities in multiple chromosomes is the main mechanism behind the increased cell killing. Misalignment and mis-segregation led to formation of multiple micronuclei and robust activation of the interferon response and inflammatory signaling via the cGAS/STING/TBK1 pathway. Cancer cells exposed to radiation in the presence of M3541 were more susceptible to killing in co-culture with NK cells from healthy donors. In addition, strong upregulation of PD-L1 expression was observed in the surviving irradiated cancer cells exposed to M3541. Simultaneous activation of the STING pathway and PD-L1 suggested that combination of radiation, ATM inhibitors and PD-L1 targeted therapy may offer a novel approach to radio-immunotherapy of locally advanced tumors.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Animals , Humans , B7-H1 Antigen/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Phosphorylation , Cell Death , Cell Cycle Proteins/metabolism , DNA Damage , Neoplasms/drug therapy , Neoplasms/radiotherapy
8.
Mol Cancer Ther ; 22(7): 859-872, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37079339

ABSTRACT

Ataxia telangiectasia and Rad3-related protein (ATR) kinase regulate a key cell regulatory node for maintaining genomic integrity by preventing replication fork collapse. ATR inhibition has been shown to increase replication stress resulting in DNA double-strand breaks (DSBs) and cancer cell death, and several inhibitors are under clinical investigation for cancer therapy. However, activation of cell-cycle checkpoints controlled by ataxia telangiectasia-mutated (ATM) kinase could minimize the lethal consequences of ATR inhibition and protect cancer cells. Here, we investigate ATR-ATM functional relationship and potential therapeutic implications. In cancer cells with functional ATM and p53 signaling, selective suppression of ATR catalytic activity by M6620 induced G1-phase arrest to prevent S-phase entry with unrepaired DSBs. The selective ATM inhibitors, M3541 and M4076, suppressed both ATM-dependent cell-cycle checkpoints, and DSB repair lowered the p53 protective barrier and extended the life of ATR inhibitor-induced DSBs. Combination treatment amplified the fraction of cells with structural chromosomal defects and enhanced cancer cell death. ATM inhibitor synergistically potentiated the ATR inhibitor efficacy in cancer cells in vitro and increased ATR inhibitor efficacy in vivo at doses that did not show overt toxicities. Furthermore, a combination study in 26 patient-derived xenograft models of triple-negative breast cancer with the newer generation ATR inhibitor M4344 and ATM inhibitor M4076 demonstrated substantial improvement in efficacy and survival compared with single-agent M4344, suggesting a novel and potentially broad combination approach to cancer therapy.


Subject(s)
Ataxia Telangiectasia , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Cell Cycle Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , DNA Damage , Checkpoint Kinase 1/genetics
9.
J Med Chem ; 66(14): 9401-9417, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37439511

ABSTRACT

We report the discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide to enter clinical trials. ALRN-6924 is a "stapled peptide" that mimics the N-terminal domain of the p53 tumor suppressor protein. It binds with high affinity to both MDM2 and MDMX (also known as MDM4), the endogenous inhibitors of p53, to activate p53 signaling in cells having a non-mutant, or wild-type TP53 genotype (TP53-WT). Iterative structure-activity optimization endowed ALRN-6924 with favorable cell permeability, solubility, and pharmacokinetic and safety profiles. Intracellular proteolysis of ALRN-6924 forms a long-acting active metabolite with potent MDM2 and MDMX binding affinity and slow dissociation kinetics. At high doses, ALRN-6924 exhibits on-mechanism anticancer activity in TP53-WT tumor models. At lower doses, ALRN-6924 transiently arrests the cell cycle in healthy tissues to protect them from chemotherapy without protecting the TP53-mutant cancer cells. These results support the continued clinical evaluation of ALRN-6924 as an anticancer and chemoprotection agent.


Subject(s)
Antineoplastic Agents , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Protein Binding , Peptides/chemistry , Antineoplastic Agents/chemistry , Cell Cycle Proteins/metabolism
10.
Blood ; 115(2): 306-14, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19897582

ABSTRACT

Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a-induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic.


Subject(s)
Apoptosis , Blast Crisis/metabolism , Leukemia, Myeloid, Acute/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Apoptosis Regulatory Proteins , Blast Crisis/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 6/biosynthesis , Caspase 6/genetics , Cell Line, Tumor , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Leukemic/drug effects , Gene Expression Regulation, Leukemic/genetics , Gene Knockdown Techniques , Humans , Imidazoles/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Stromal Cells/metabolism , Tumor Suppressor Protein p53/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics
11.
Mol Cancer Ther ; 21(6): 859-870, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35405736

ABSTRACT

Radiotherapy and chemical DNA-damaging agents are among the most widely used classes of cancer therapeutics today. Double-strand breaks (DSB) induced by many of these treatments are lethal to cancer cells if left unrepaired. Ataxia telangiectasia-mutated (ATM) kinase plays a key role in the DNA damage response by driving DSB repair and cell-cycle checkpoints to protect cancer cells. Inhibitors of ATM catalytic activity have been shown to suppress DSB DNA repair, block checkpoint controls and enhance the therapeutic effect of radiotherapy and other DSB-inducing modalities. Here, we describe the pharmacological activities of two highly potent and selective ATM inhibitors from a new chemical class, M3541 and M4076. In biochemical assays, they inhibited ATM kinase activity with a sub-nanomolar potency and showed remarkable selectivity against other protein kinases. In cancer cells, the ATM inhibitors suppressed DSB repair, clonogenic cancer cell growth, and potentiated antitumor activity of ionizing radiation in cancer cell lines. Oral administration of M3541 and M4076 to immunodeficient mice bearing human tumor xenografts with a clinically relevant radiotherapy regimen strongly enhanced the antitumor activity, leading to complete tumor regressions. The efficacy correlated with the inhibition of ATM activity and modulation of its downstream targets in the xenograft tissues. In vitro and in vivo experiments demonstrated strong combination potential with PARP and topoisomerase I inhibitors. M4076 is currently under clinical investigation.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Animals , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA , DNA Breaks, Double-Stranded , DNA Repair , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology
12.
Mol Cancer Res ; 20(4): 568-582, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34980594

ABSTRACT

Radiotherapy is the most widely used cancer treatment and improvements in its efficacy and safety are highly sought-after. Peposertib (also known as M3814), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, effectively suppresses the repair of radiation-induced DNA double-strand breaks (DSB) and regresses human xenograft tumors in preclinical models. Irradiated cancer cells devoid of p53 activity are especially sensitive to the DNA-PK inhibitor, as they lose a key cell-cycle checkpoint circuit and enter mitosis with unrepaired DSBs, leading to catastrophic consequences. Here, we show that inhibiting the repair of DSBs induced by ionizing radiation with peposertib offers a powerful new way for improving radiotherapy by simultaneously enhancing cancer cell killing and response to a bifunctional TGFƟ "trap"/anti-PD-L1 cancer immunotherapy. By promoting chromosome misalignment and missegregation in p53-deficient cancer cells with unrepaired DSBs, DNA-PK inhibitor accelerated micronuclei formation, a key generator of cytosolic DNA and activator of cGAS/STING-dependent inflammatory signaling as it elevated PD-L1 expression in irradiated cancer cells. Triple combination of radiation, peposertib, and bintrafusp alfa, a fusion protein simultaneously inhibiting the profibrotic TGFƟ and immunosuppressive PD-L1 pathways was superior to dual combinations and suggested a novel approach to more efficacious radioimmunotherapy of cancer. IMPLICATIONS: Selective inhibition of DNA-PK in irradiated cancer cells enhances inflammatory signaling and activity of dual TGFƟ/PD-L1 targeted therapy and may offer a more efficacious combination option for the treatment of locally advanced solid tumors.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , B7-H1 Antigen/metabolism , DNA , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Pyridazines , Quinazolines , Transforming Growth Factor beta
13.
Mol Cancer ; 10: 49, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21539745

ABSTRACT

BACKGROUND: Hormone therapy is the standard of care for newly diagnosed or recurrent prostate cancers. It uses anti-androgen agents, castration, or both to eliminate cancer promoting effect of testicular androgen. The p53 tumor suppressor controls a major pathway that can block cell proliferation or induce apoptosis in response to diverse forms of oncogenic stress. Activation of the p53 pathway in cancer cells expressing wild-type p53 has been proposed as a novel therapeutic strategy and recently developed MDM2 antagonists, the nutlins, have validated this in preclinical models of cancer. The crosstalk between p53 and androgen receptor (AR) signaling suggest that p53 activation could augment antitumor outcome of androgen ablation in prostate cancer. Here, we test this hypothesis in vitro and in vivo using the MDM2 antagonist, nutlin-3 and the p53 wild-type prostate cancer cell line, LNCaP. RESULTS: Using charcoal-stripped serum as a cellular model of androgen deprivation, we show an increased apoptotic effect of p53 activation by nutlin-3a in the androgen-dependent LNCaP cells and to a lesser extent in androgen-independent but responsive 22Rv1 cell line. This effect is due, at least in part, to an enhanced downregulation of AR expression by activated p53. In vivo, androgen deprivation followed by two weeks of nutlin administration in LNCaP-bearing nude mice led to a greater tumor regression and dramatically increased survival. CONCLUSIONS: Since majority of prostate tumors express wild-type p53, its activation by MDM2 antagonists in combination with androgen depletion may offer an efficacious new approach to prostate cancer therapy.


Subject(s)
Cell Proliferation/drug effects , Imidazoles/pharmacology , Piperazines/pharmacology , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Androgens/metabolism , Androgens/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mice, Nude , MicroRNAs/genetics , Mutation , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-mdm2/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
14.
BMC Cancer ; 11: 211:1-11, 2011 May 30.
Article in English | MEDLINE | ID: mdl-21624110

ABSTRACT

BACKGROUND: Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified MDM2 gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy. METHODS: A panel of sarcoma cell lines with different TP53 and MDM2 status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined. RESULTS: Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type TP53 and amplified MDM2, or with Methotrexate in both MDM2 normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated TP53, but inhibited the effect of Methotrexate. CONCLUSION: The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Imidazoles/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Humans , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Sci Rep ; 11(1): 12148, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108527

ABSTRACT

Peposertib (M3814) is a potent and selective DNA-PK inhibitor in early clinical development. It effectively blocks non-homologous end-joining repair of DNA double-strand breaks (DSB) and strongly potentiates the antitumor effect of ionizing radiation (IR) and topoisomerase II inhibitors. By suppressing DNA-PK catalytic activity in the presence of DNA DSB, M3814 potentiates ATM/p53 signaling leading to enhanced p53-dependent antitumor activity in tumor cells. Here, we investigated the therapeutic potential of M3814 in combination with DSB-inducing agents in leukemia cells and aĀ patient-derived tumor. We show that in the presence of IR or topoisomerase II inhibitors, M3814 boosts the ATM/p53 response in acute leukemia cells leading to the elevation of p53 protein levels as well as its transcriptional activity. M3814 synergistically sensitized p53 wild-type, but not p53-deficient, AML cells to killing by DSB-inducing agents via p53-dependent apoptosis involving both intrinsic and extrinsic effector pathways. The antileukemic effect was further potentiated by enhancing daunorubicin-induced myeloid cell differentiation. Further, combined with the fixed-ratio liposomal formulation of daunorubicin and cytarabine, CPX-351, M3814 enhanced the efficacy against leukemia cells in vitro and in vivo without increasing hematopoietic toxicity, suggesting that DNA-PK inhibition could offer a novel clinical strategy for harnessing the anticancer potential of p53 in AML therapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Activated Protein Kinase/antagonists & inhibitors , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/pathology , Pyridazines/pharmacology , Quinazolines/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Proliferation , DNA Repair , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
16.
Blood ; 112(9): 3827-34, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18682598

ABSTRACT

The p53 protein plays a key role in securing the apoptotic response of chronic lymphocytic leukemia (CLL) cells to genotoxic agents. Transcriptional induction of proapoptotic proteins including Puma are thought to mediate p53-dependent apoptosis. In contrast, recent studies have identified a novel nontranscriptional mechanism, involving direct binding of p53 to antiapoptotic proteins including Bcl-2 at the mitochondrial surface. Here we show that the major fraction of p53 induced in CLL cells by chlorambucil, fludarabine, or nutlin 3a was stably associated with mitochondria, where it binds to Bcl-2. The Puma protein, which was constitutively expressed in a p53-independent manner, was modestly up-regulated following p53 induction. Pifithrin alpha, an inhibitor of p53-mediated transcription, blocked the up-regulation of Puma and also of p21(CIP1). Surprisingly, pifithrin alpha dramatically augmented apoptosis induction by p53-elevating agents and also accelerated the proapoptotic conformation change of the Bax protein. These data suggest that direct interaction of p53 with mitochondrial antiapoptotic proteins including Bcl-2 is the major route for apoptosis induction in CLL cells and that p53's transcriptional targets include proteins that impede this nontranscriptional pathway. Therefore, strategies that block up-regulation of p53-mediated transcription may be of value in enhancing apoptosis induction of CLL cells by p53-elevating drugs.


Subject(s)
Apoptosis/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Tumor Suppressor Protein p53/metabolism , Adult , Aged , Aged, 80 and over , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Benzothiazoles/pharmacology , Chlorambucil/pharmacology , Female , Humans , In Vitro Techniques , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Toluene/analogs & derivatives , Toluene/pharmacology , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/antagonists & inhibitors , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
17.
Front Oncol ; 10: 127, 2020.
Article in English | MEDLINE | ID: mdl-32117773

ABSTRACT

Despite significant advances in the treatment of acute myeloid leukemia (AML) the long-term prognosis remains relatively poor and there is an urgent need for improved therapies with increased potency and tumor selectivity. Mylotarg is the first AML-targeting drug from a new generation of antibody drug conjugate (ADC) therapies aiming at the acute leukemia cell compartment with increased specificity. This agent targets leukemia cells for apoptosis with a cytotoxic payload, calicheamicin, carried by a CD33-specific antibody. Calicheamicin induces DNA double strand breaks (DSB) which, if left unrepaired, lead to cell cycle arrest and apoptosis in cancer cells. However, repair of DSB by the non-homologous end joining pathway driven by DNA-dependent protein kinase (DNA-PK) can reduce the efficacy of calicheamicin. M3814 is a novel, potent and selective inhibitor of DNA-PK. This compound effectively blocks DSB repair, strongly potentiates the antitumor activity of ionizing radiation and DSB-inducing chemotherapeutics and is currently under clinical investigation. Suppressing DSB repair with M3814 synergistically enhanced the apoptotic activity of calicheamicin in cultured AML cells. Combination of M3814 with Mylotarg in two AML xenograft models, MV4-11 and HL-60, demonstrated increased efficacy and significantly improved survival benefit without elevated body weight loss. Our results support a new application for pharmacological DNA-PK inhibitors as enhancers of Mylotarg and a potential new combination treatment option for AML patients.

18.
Mol Cancer Ther ; 19(5): 1091-1101, 2020 05.
Article in English | MEDLINE | ID: mdl-32220971

ABSTRACT

Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , DNA-Activated Protein Kinase/antagonists & inhibitors , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Quinazolines/pharmacology , Radiation, Ionizing , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Mice , Mice, Nude , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Bioorg Med Chem Lett ; 19(2): 319-23, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19071019

ABSTRACT

Cdc7 kinase plays a critical role in the regulation of DNA replication in eukaryotic cells and has been proposed as a target for cancer therapy. We have identified a class of Cdc7/Dbf4 inhibitors with a pyrido-thieno-pyrimidine core structure. Synthesis of a focused pyrido-thieno-pyrimidine library yielded potent and selective Cdc7 inhibitors with antiproliferative activity against cancer cells in vitro. Their synthesis and SAR data are presented herein.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Pyrimidines/chemistry , Structure-Activity Relationship
20.
Cancer Res ; 67(15): 7350-7, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17671205

ABSTRACT

Cellular senescence is emerging as an important in vivo anticancer response elicited by multiple stresses, including currently used chemotherapeutic drugs. Nutlin-3a is a recently discovered small-molecule antagonist of the p53-destabilizing protein murine double minute-2 (MDM2) that induces cell cycle arrest and apoptosis in cancer cells with functional p53. Here, we report that nutlin-3a induces cellular senescence in murine primary fibroblasts, oncogenically transformed fibroblasts, and fibrosarcoma cell lines. No evidence of drug-induced apoptosis was observed in any case. Nutlin-induced senescence was strictly dependent on the presence of functional p53 as revealed by the fact that cells lacking p53 were completely insensitive to the drug, whereas cells lacking the tumor suppressor alternative reading frame product of the CDKN2A locus underwent irreversible cell cycle arrest. Interestingly, irreversibility was achieved in neoplastic cells faster than in their corresponding parental primary cells, suggesting that nutlin-3a and oncogenic signaling cooperate in activating p53. Our current results suggest that senescence could be a major cellular outcome of cancer therapy by antagonists of the p53-MDM2 interaction, such as nutlin-3a.


Subject(s)
Cellular Senescence , Fibroblasts/metabolism , Fibrosarcoma/pathology , Imidazoles/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/physiology , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/physiology , Animals , Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/physiology , Fibroblasts/cytology , Fibrosarcoma/metabolism , Mice , Mice, Knockout , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL