Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanomaterials (Basel) ; 10(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979003

ABSTRACT

Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CH3SO2-) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption of light decreased in the opposite manner, but no influence on the band gap energies was observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈ Mes-CN > S-CN. The highest activity of Mes-ExCN and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition, in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic activity as well.

2.
J Pharm Biomed Anal ; 128: 342-351, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27328361

ABSTRACT

Cyclopentenediones (CPDs) are compounds with a variety of applications ranging from the preparation of functional polymers to the development of antimicrobial agents, suggesting the potential use of CPDs as novel bioactive compounds or drugs. For this reason, a detailed characterization of CPDs and the development of robust analytical methods for their trace analysis are being sought. Here we focused on the design and synthesis of a library of novelized benzylidene CPD derivatives that were consequently characterized by ultra-high performance liquid chromatography (UHPLC) on-line connected with tandem mass spectrometry (MS/MS). The library design was based on a 2-benzylidene-4-cyclopentene-1,3-dione skeleton substituted with a variety of hydroxy, methoxy, halogen, linear aliphatic, heterocyclic and saccharide moieties, primarily modulating the skeleton's hydrophobicity. The prepared CPDs were effectively ionized by positive/negative atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI). After careful optimization of the dopant composition and flow rate, positive-mode APPI proved to be more sensitive than APCI. In negative mode, both ionization techniques gave similar results. Further, a detailed MS fragmentation study was performed, confirming the structure of the compounds and enabling positional isomers of CPDs to be differentiated on the basis of their collision spectra analysis. Finally, an optimization of the composition of the mobile phase and reversed-phased separation mode were done, followed by a selection of the most suitable UHPLC stationary phases, i.e. C18, C8 and phenyl. The applicability of the method was evaluated by the inclusion of the other two substances in the study, i.e. monomeric and dimeric bioactive CPDs, compound TX-1123 and nostotrebin 6 with cytostatic and antimicrobial activities, respectively. The results presented here could be used in further investigations of the chromatographic retention and MS behavior of CPDs, which could be utilized for their isolation, detailed characterization and analysis in biological systems.


Subject(s)
Chromatography, High Pressure Liquid , Cyclopentanes/analysis , Tandem Mass Spectrometry , Benzylidene Compounds/analysis , Cyclopentanes/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL