Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Publication year range
1.
J Neurochem ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549444

ABSTRACT

The neurovascular unit, composed of vascular endothelium, vascular smooth muscle, extracellular matrix components, pericytes, astrocytes, microglia, and neurons, allows the highly regulated exchange of molecules and the limited trafficking of cells to the brain through coordinated signaling activity. The passage of peripheral immune cells to the brain parenchyma is observed when there is clear damage to the barriers of this neurovascular unit, as occurs in traumatic brain injury. The possibility of leukocyte infiltration to the brain in neurodegenerative conditions has been proposed. In this review, we focus on describing the evidence for peripheral immune cell infiltration to the brain in the two most frequent neurodegenerative diseases: Alzheimer's and Parkinson's diseases. In particular, we address the mechanisms that promote the passage of these cells into the brain under such pathological conditions. We also discuss the relevance of the resulting cellular interactions, which provide evidence that the presence of peripheral immune cells in the brain is a key point in these neurodegenerative diseases.

2.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077533

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid ß peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Humans , Inflammation/metabolism , Stem Cells/metabolism
3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430654

ABSTRACT

Sucrose consumption impairs behavioral and cognitive functions that correlate with decreased neurogenesis in animal models. When consumed during early adolescence, this disaccharide promotes anxious and depressive behaviors, along with a reduction in the generation of new neurons in the dentate gyrus of the hippocampus. Data concerning sucrose consumption during late adolescence are lacking, and the effect of sucrose intake on the ventral dentate gyrus of the hippocampus (which modulates anxiety and depression) remains elusive. Here, we tested whether sucrose intake during late adolescence causes anxiety or impaired neurogenesis in the ventral dentate gyrus. Rats did not display anxiety-like behaviors neither at the light−dark box test nor at the open field exploration. However, there was a significant increase in proliferative cells in the subgranular zone of the ventral dentate gyrus in rats exposed to sucrose (p < 0.05). This increased proliferation corresponded to neural stem cells (Radial Type 1 cells) in the group exposed to sucrose until adulthood but was not present in rats exposed to sucrose only during late adolescence. Remarkably, the phosphorylation of ERK1/2 kinases was increased in the hippocampi of rats exposed to sucrose only during late adolescence, suggesting that the increased proliferation in this group could be mediated by the MAPK pathway. On the other hand, although no differences were found in the number of immature granular neurons, we observed more immature granular neurons with impaired dendritic orientation in both groups exposed to sucrose. Finally, GAD65/67 and BCL2 levels did not change between groups, suggesting an unaltered hippocampal GABAergic system and similar apoptosis, respectively. This information provides the first piece of evidence of how sucrose intake, starting in late adolescence, impacts ventral dentate gyrus neurogenesis and contributes to a better understanding of the effects of this carbohydrate on the brain at postnatal stages.


Subject(s)
Dentate Gyrus , Neural Stem Cells , Rats , Animals , Dentate Gyrus/metabolism , Sucrose/metabolism , Neurogenesis/physiology , Neural Stem Cells/metabolism , Anxiety
4.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639209

ABSTRACT

The process of freezing cells or tissues and depositing them in liquid nitrogen at -196 °C is called cryopreservation. Sub-zero temperature is not a physiological condition for cells and water ice crystals represent the main problem since they induce cell death, principally in large cells like oocytes, which have a meiotic spindle that degenerates during this process. Significantly, cryopreservation represents an option for fertility preservation in patients who develop gonadal failure for any condition and those who want to freeze their germ cells for later use. The possibility of freezing sperm, oocytes, and embryos has been available for a long time, and in 1983 the first birth with thawed oocytes was achieved. From the mid-2000s forward, the use of egg vitrification through intracytoplasmic sperm injection has improved pregnancy rates. Births using assisted reproductive technologies (ART) have some adverse conditions and events. These risks could be associated with ART procedures or related to infertility. Cryopreservation generates changes in the epigenome of gametes and embryos, given that ART occurs when the epigenome is most vulnerable. Furthermore, cryoprotective agents induce alterations in the integrity of germ cells and embryos. Notably, cryopreservation extensively affects cell viability, generates proteomic profile changes, compromises crucial cellular functions, and alters sperm motility. This technique has been widely employed since the 1980s and there is a lack of knowledge about molecular changes. The emerging view is that molecular changes are associated with cryopreservation, affecting metabolism, cytoarchitecture, calcium homeostasis, epigenetic state, and cell survival, which compromise the fertilization in ART.


Subject(s)
Calcium/metabolism , Cryopreservation/standards , Embryo, Mammalian/cytology , Epigenesis, Genetic , Germ Cells/cytology , Infertility/therapy , Proteome/metabolism , Cell Survival , Cryoprotective Agents/chemistry , Female , Fertility Preservation/standards , Fertilization in Vitro , Germ Cells/metabolism , Humans , Infertility/metabolism , Infertility/pathology , Male , Oocytes/cytology , Oocytes/metabolism , Pregnancy , Spermatozoa/cytology , Spermatozoa/metabolism
5.
Molecules ; 26(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805347

ABSTRACT

A generation of induced pluripotent stem cells (iPSC) by ectopic expression of OCT4, SOX2, KLF4, and c-MYC has established promising opportunities for stem cell research, drug discovery, and disease modeling. While this forced genetic expression represents an advantage, there will always be an issue with genomic instability and transient pluripotency genes reactivation that might preclude their clinical application. During the reprogramming process, a somatic cell must undergo several epigenetic modifications to induce groups of genes capable of reactivating the endogenous pluripotency core. Here, looking to increase the reprograming efficiency in somatic cells, we evaluated the effect of epigenetic molecules 5-aza-2'-deoxycytidine (5AZ) and valproic acid (VPA) and two small molecules reported as reprogramming enhancers, CHIR99021 and A83-01, on the expression of pluripotency genes and the methylation profile of the OCT4 promoter in a human dermal fibroblasts cell strain. The addition of this cocktail to culture medium increased the expression of OCT4, SOX2, and KLF4 expression by 2.1-fold, 8.5-fold, and 2-fold, respectively, with respect to controls; concomitantly, a reduction in methylated CpG sites in OCT4 promoter region was observed. The epigenetic cocktail also induced the expression of the metastasis-associated gene S100A4. However, the epigenetic cocktail did not induce the morphological changes characteristic of the reprogramming process. In summary, 5AZ, VPA, CHIR99021, and A83-01 induced the expression of OCT4 and SOX2, two critical genes for iPSC. Future studies will allow us to precise the mechanisms by which these compounds exert their reprogramming effects.


Subject(s)
Cell Differentiation/drug effects , Decitabine/pharmacology , Fibroblasts/drug effects , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Thiosemicarbazones/pharmacology , Valproic Acid/pharmacology , Cell Line , Epigenesis, Genetic/drug effects , Fibroblasts/cytology , Gene Expression/drug effects , Humans , Kruppel-Like Factor 4
6.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Article in English | MEDLINE | ID: mdl-28472853

ABSTRACT

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Subject(s)
Ataxia/genetics , Intellectual Disability/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muscle Weakness/genetics , Rhabdomyolysis/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Ataxia/enzymology , Ataxia/pathology , CRISPR-Cas Systems , Cell Differentiation , Child, Preschool , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Fatal Outcome , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Editing/methods , Gene Expression , Genes, Lethal , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Intellectual Disability/enzymology , Intellectual Disability/pathology , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/deficiency , Motor Neurons/cytology , Motor Neurons/metabolism , Muscle Weakness/enzymology , Muscle Weakness/pathology , Primary Cell Culture , Rhabdomyolysis/enzymology , Rhabdomyolysis/pathology , Ubiquinone/genetics
7.
Int J Mol Sci ; 19(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551562

ABSTRACT

The neural crest (NC) comprises a multipotent cell population that produces peripheral neurons, cartilage, and smooth muscle cells, among other phenotypes. The participation of Hes1 and Msx1 when expressed in mouse embryonic stem cells (mESCs) undergoing NC differentiation is unexplored. In this work, we generated stable mESCs transfected with constructs encoding chimeric proteins in which the ligand binding domain of glucocorticoid receptor (GR), which is translocated to the nucleus by dexamethasone addition, is fused to either Hes1 (HGR) or Msx1 (MGR), as well as double-transgenic cells (HGR+MGR). These lines continued to express pluripotency markers. Upon NC differentiation, all lines exhibited significantly decreased Sox2 expression and upregulated Sox9, Snai1, and Msx1 expression, indicating NC commitment. Dexamethasone was added to induce nuclear translocation of the chimeric proteins. We found that Collagen IIa transcripts were increased in MGR cells, whereas coactivation of HGR+MGR caused a significant increase in Smooth muscle actin (α-Sma) transcripts. Immunostaining showed that activation in HGR+MGR cells induced higher proportions of ß-TUBULIN III⁺, α-SMA⁺ and COL2A1⁺ cells. These findings indicate that nuclear translocation of MSX-1, alone or in combination with HES-1, produce chondrocyte-like cells, and simultaneous activation of HES-1 and MSX-1 increases the generation of smooth muscle and neuronal cells.


Subject(s)
Chondrocytes/cytology , MSX1 Transcription Factor/genetics , Mouse Embryonic Stem Cells/cytology , Myocytes, Smooth Muscle/cytology , Neural Crest/cytology , Receptors, Glucocorticoid/genetics , Transcription Factor HES-1/genetics , Actins/genetics , Animals , Cell Differentiation , Cell Nucleus/metabolism , Cells, Cultured , Chondrocytes/metabolism , Collagen Type II/genetics , Dexamethasone/pharmacology , MSX1 Transcription Factor/metabolism , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/metabolism , Myocytes, Smooth Muscle/metabolism , NIH 3T3 Cells , Neural Crest/metabolism , Promoter Regions, Genetic , Protein Transport/drug effects , Recombinant Fusion Proteins/metabolism , SOX9 Transcription Factor/metabolism , SOXB1 Transcription Factors/metabolism , Snail Family Transcription Factors/metabolism , Transcription Factor HES-1/metabolism
8.
Stem Cells ; 32(11): 2811-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24989459

ABSTRACT

Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Genetic Engineering , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Animals , Cell Differentiation/genetics , Fibroblasts/cytology , Genetic Engineering/methods , Humans , Neurons/metabolism
9.
Mol Ther ; 21(8): 1579-91, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23732989

ABSTRACT

Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell-derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3-expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3-treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3-directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains.


Subject(s)
Axons/metabolism , Cell- and Tissue-Based Therapy , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Semaphorins/metabolism , Animals , Cell Differentiation , Cell Line , Corpus Striatum/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , HEK293 Cells/metabolism , HEK293 Cells/transplantation , Humans , Mice , Oxidopamine/metabolism , Parkinsonian Disorders/physiopathology , Rats , Rotarod Performance Test , Semaphorins/genetics , Substantia Nigra , Synaptic Transmission , Transfection
10.
Front Neuroanat ; 18: 1342762, 2024.
Article in English | MEDLINE | ID: mdl-38425804

ABSTRACT

The digital extraction of detailed neuronal morphologies from microscopy data is an essential step in the study of neurons. Ever since Cajal's work, the acquisition and analysis of neuron anatomy has yielded invaluable insight into the nervous system, which has led to our present understanding of many structural and functional aspects of the brain and the nervous system, well beyond the anatomical perspective. Obtaining detailed anatomical data, though, is not a simple task. Despite recent progress, acquiring neuron details still involves using labor-intensive, error prone methods that facilitate the introduction of inaccuracies and mistakes. In consequence, getting reliable morphological tracings usually needs the completion of post-processing steps that require user intervention to ensure the extracted data accuracy. Within this framework, this paper presents NeuroEditor, a new software tool for visualization, editing and correction of previously reconstructed neuronal tracings. This tool has been developed specifically for alleviating the burden associated with the acquisition of detailed morphologies. NeuroEditor offers a set of algorithms that can automatically detect the presence of potential errors in tracings. The tool facilitates users to explore an error with a simple mouse click so that it can be corrected manually or, where applicable, automatically. In some cases, this tool can also propose a set of actions to automatically correct a particular type of error. Additionally, this tool allows users to visualize and compare the original and modified tracings, also providing a 3D mesh that approximates the neuronal membrane. The approximation of this mesh is computed and recomputed on-the-fly, reflecting any instantaneous changes during the tracing process. Moreover, NeuroEditor can be easily extended by users, who can program their own algorithms in Python and run them within the tool. Last, this paper includes an example showing how users can easily define a customized workflow by applying a sequence of editing operations. The edited morphology can then be stored, together with the corresponding 3D mesh that approximates the neuronal membrane.

11.
Stem Cell Res ; 76: 103337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359473

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a prominent reduction of striatal dopamine levels leading to motor alterations. The mechanisms underlying neurodegeneration in PD remain unknown. Here, we generated an induced pluripotent stem cell line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD (UNAMi002-A) and another cell line from dermal fibroblasts of a patient carrying the point mutation c.1423delC in PINK1 (UNAMi003-A). These patient-derived iPS cell lines offer the possibility of modeling PD and understanding the mechanisms that contribute to dopamine neuron loss.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Protein Kinases/genetics , Mutation/genetics
12.
Genes (Basel) ; 14(12)2023 12 08.
Article in English | MEDLINE | ID: mdl-38137011

ABSTRACT

BACKGROUND: Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS: In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS: Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS: Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.


Subject(s)
Ambystoma mexicanum , Spinal Cord Injuries , Humans , Animals , Rats , Mice , Ambystoma mexicanum/genetics , RNA-Seq , Rodentia/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Gene Expression Profiling , Models, Animal
13.
Biomedicines ; 11(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38137537

ABSTRACT

Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.

14.
Stem Cell Res Ther ; 14(1): 42, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927767

ABSTRACT

BACKGROUND: The generation of induced pluripotent stem cells has opened the field of study for stem cell research, disease modeling and drug development. However, the epigenetic signatures present in somatic cells make cell reprogramming still an inefficient process. This epigenetic memory constitutes an obstacle in cellular reprogramming. Here, we report the effect of hydralazine (HYD) and valproic acid (VPA), two small molecules with proven epigenetic activity, on the expression of pluripotency genes in adult (aHF) and neonatal (nbHF) human fibroblasts. METHODS: aHF and nbHF were treated with HYD and/or VPA, and viability and gene expression assays for OCT4, NANOG, c-MYC, KLF4, DNMT1, TET3, ARID1A and ARID2 by quantitative PCR were performed. aHF and nbHF were transfected with episomal plasmid bearing Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and exposed to HYD and VPA to determine the reprogramming efficiency. Methylation sensitive restriction enzyme (MSRE) qPCR assays were performed on OCT4 and NANOG promoter regions. Immunofluorescence assays were carried out for pluripotency genes on iPSC derived from aHF and nbHF. RESULTS: HYD upregulated the expression of OCT4 (2.5-fold) and NANOG (fourfold) genes but not c-Myc or KLF4 in aHF and had no significant effect on the expression of all these genes in nbHF. VPA upregulated the expression of NANOG (twofold) in aHF and c-MYC in nbHF, while it downregulated the expression of NANOG in nbHF. The combination of HYD and VPA canceled the OCT4 and NANOG overexpression induced by HYD in aHF, while it reinforced the effects of VPA on c-Myc expression in nbHF. The HYD-induced overexpression of OCT4 and NANOG in aHDF was not dependent on demethylation of gene promoters, and no changes in the reprogramming efficiency were observed in both cell populations despite the downregulation of epigenetic genes DNMT1, ARID1A, and ARID2 in nbHF. CONCLUSIONS: Our data provide evidence that HYD regulates the expression of OCT4 and NANOG pluripotency genes as well as ARID1A and ARID2 genes, two members of the SWI/SNF chromatin remodeling complex family, in normal human dermal fibroblasts.


Subject(s)
Chromatin Assembly and Disassembly , Induced Pluripotent Stem Cells , Infant, Newborn , Humans , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/metabolism , Fibroblasts/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
15.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067166

ABSTRACT

Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.


Subject(s)
Human Embryonic Stem Cells , Parkinson Disease , Animals , Humans , Dopaminergic Neurons/metabolism , Human Embryonic Stem Cells/metabolism , Haplorhini/metabolism , Mesencephalon/metabolism , Dopamine/metabolism , Parkinson Disease/therapy , Parkinson Disease/metabolism
16.
WIREs Mech Dis ; 14(1): e1537, 2022 01.
Article in English | MEDLINE | ID: mdl-35023327

ABSTRACT

Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.


Subject(s)
Embryonic Development , Neural Crest , Animals , Humans , Signal Transduction , Stem Cells , Vertebrates
17.
Front Cell Dev Biol ; 10: 884748, 2022.
Article in English | MEDLINE | ID: mdl-36353512

ABSTRACT

Neurodegenerative diseases affect millions of people worldwide and there are currently no cures. Two types of common neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease (PD). Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) have become powerful tools to elucidate the inherent complexity and dynamics of the central nervous system at cellular resolution. This technology has allowed the identification of cell types and states, providing new insights into cellular susceptibilities and molecular mechanisms underlying neurodegenerative conditions. Exciting research using high throughput scRNA-seq and snRNA-seq technologies to study AD and PD is emerging. Herein we review the recent progress in understanding these neurodegenerative diseases using these state-of-the-art technologies. We discuss the fundamental principles and implications of single-cell sequencing of the human brain. Moreover, we review some examples of the computational and analytical tools required to interpret the extensive amount of data generated from these assays. We conclude by highlighting challenges and limitations in the application of these technologies in the study of AD and PD.

18.
Front Cell Dev Biol ; 10: 1001701, 2022.
Article in English | MEDLINE | ID: mdl-36313573

ABSTRACT

Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.

19.
ACS Chem Neurosci ; 13(19): 2821-2828, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36122168

ABSTRACT

Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1ß and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1ß. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , MicroRNAs , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Dopaminergic Neurons/metabolism , MAP Kinase Signaling System , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 1 , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/pharmacology , Olfactory Bulb , Phosphorylation , Rats , Tyrosine 3-Monooxygenase/metabolism
20.
Stem Cell Res ; 65: 102972, 2022 12.
Article in English | MEDLINE | ID: mdl-36427474

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease caused by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which results in motor alterations. The exact mechanisms underlying the dopaminergic neurodegeneration in PD are still unknown. Here, we generated a human induced pluripotent stem cell (iPSC) line from dermal fibroblasts of a Mexican patient diagnosed with sporadic PD. The generated iPS cell line (UNAMi001-A) express pluripotency markers, maintain a normal karyotype and display the ability to differentiate into all three germ layers. This is the first iPSC line from a Mexican patient and will be useful for PD modeling.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Humans
SELECTION OF CITATIONS
SEARCH DETAIL