Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Haematol ; 204(4): 1439-1449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37807708

ABSTRACT

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/therapy , Antigens, CD34/analysis , Bone Marrow/chemistry , Flow Cytometry , Hematopoietic Stem Cell Mobilization , ADP-ribosyl Cyclase 1
2.
J Clin Oncol ; 41(7): 1383-1392, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36315921

ABSTRACT

PURPOSE: Primary plasma cell leukemia (PCL) is the most aggressive monoclonal gammopathy. It was formerly characterized by ≥ 20% circulating plasma cells (CTCs) until 2021, when this threshold was decreased to ≥ 5%. We hypothesized that primary PCL is not a separate clinical entity, but rather that it represents ultra-high-risk multiple myeloma (MM) characterized by elevated CTC levels. METHODS: We assessed the levels of CTCs by multiparameter flow cytometry in 395 patients with newly diagnosed transplant-ineligible MM to establish a cutoff for CTCs that identifies the patients with ultra-high-risk PCL-like MM. We tested the cutoff on 185 transplant-eligible patients with MM and further validated on an independent cohort of 280 transplant-ineligible patients treated in the GEM-CLARIDEX trial. The largest published real-world cohort of patients with primary PCL was used for comparison of survival. Finally, we challenged the current 5% threshold for primary PCL diagnosis. RESULTS: Newly diagnosed transplant-ineligible patients with MM with 2%-20% CTCs had significantly shorter progression-free survival (3.1 v 15.6 months; P < .001) and overall survival (14.6 v 33.6 months; P = .023) than patients with < 2%. The 2% cutoff proved to be applicable also in transplant-eligible patients with MM and was successfully validated on an independent cohort of patients from the GEM-CLARIDEX trial. Most importantly, patients with 2%-20% CTCs had comparable dismal outcomes with primary PCL. Moreover, after revealing a low mean difference between flow cytometric and morphologic evaluation of CTCs, we showed that patients with 2%-5% CTCs have similar outcomes as those with 5%-20% CTCs. CONCLUSION: Our study uncovers that ≥ 2% CTCs is a biomarker of hidden primary PCL and supports the assessment of CTCs by flow cytometry during the diagnostic workup of MM.


Subject(s)
Leukemia, Plasma Cell , Multiple Myeloma , Neoplastic Cells, Circulating , Humans , Multiple Myeloma/drug therapy , Prognosis , Plasma Cells/pathology , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor
3.
Nat Commun ; 13(1): 6820, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357400

ABSTRACT

Serum monoclonal immunoglobulin (Ig) is the main diagnostic factor for patients with multiple myeloma (MM), however its prognostic potential remains unclear. On a large MM patient cohort (n = 4146), we observe no correlation between serum Ig levels and patient survival, while amount of intracellular Ig has a strong predictive effect. Focused CRISPR screen, transcriptional and proteomic analysis identify deubiquitinase OTUD1 as a critical mediator of Ig synthesis, proteasome inhibitor sensitivity and tumor burden in MM. Mechanistically, OTUD1 deubiquitinates peroxiredoxin 4 (PRDX4), protecting it from endoplasmic reticulum (ER)-associated degradation. In turn, PRDX4 facilitates Ig production which coincides with the accumulation of unfolded proteins and higher ER stress. The elevated load on proteasome ultimately potentiates myeloma response to proteasome inhibitors providing a window for a rational therapy. Collectively, our findings support the significance of the Ig production machinery as a biomarker and target in the combinatory treatment of MM patients.


Subject(s)
Multiple Myeloma , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Bortezomib/pharmacology , Bortezomib/therapeutic use , Proteomics , Apoptosis , Proteasome Endopeptidase Complex/metabolism , Immunoglobulins , Deubiquitinating Enzymes , Ubiquitin-Specific Proteases
4.
Front Immunol ; 12: 816499, 2021.
Article in English | MEDLINE | ID: mdl-35087536

ABSTRACT

Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Multiple Myeloma/etiology , Multiple Myeloma/metabolism , Tumor Microenvironment/immunology , Animals , Biomarkers , Cytotoxicity, Immunologic , Disease Management , Disease Susceptibility , Humans , Immunity , Immunomodulation/drug effects , Molecular Targeted Therapy , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy , Prognosis , Receptors, Natural Killer Cell/genetics , Receptors, Natural Killer Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Treatment Outcome , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL