Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630396

ABSTRACT

Molecular structures, in chloroform and DMSO solution, of the free fatty acids (FFAs) caproleic acid, oleic acid, α-linolenic acid, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) are reported with the combined use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the COOH protons, transient 1D NOE experiments and DFT calculations demonstrate the major contribution of low molecular weight aggregates of dimerized fatty acids through intermolecular hydrogen bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures even at the low concentration of 20 mM in CDCl3. For the dimeric DHA, a structural model of an intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of one molecule and the ω-3 double bond of a second molecule is shown to play a role. In DMSO-d6 solution, NMR and DFT studies show that the carboxylic groups form strong intermolecular hydrogen bond interactions with a single discrete solvation molecule of DMSO. These solvation species form parallel and antiparallel interdigitated structures of low molecular weight, as in chloroform solution. This structural motif, therefore, is an intrinsic property of the FFAs, which is not strongly affected by the length and degree of unsaturation of the chain and the hydrogen bond ability of the solvent.

2.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175134

ABSTRACT

Medium- and long-chain saturated and unsaturated free fatty acids (FFAs) are known to bind to human serum albumin (HSA), the main plasma carrier protein. Atomic-level structural data regarding the binding mode in Sudlow's sites I (FA7) and II (FA4, FA3) of the polyunsaturated ω-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), however, are largely unknown. Herein, we report the combined use of saturation transfer difference (STD) and Interligand NOEs for Pharmacophore Mapping (INPHARMA) NMR techniques and molecular docking calculations to investigate the binding mode of DHA and EPA in Sudlow's sites Ι and ΙΙ of HSA. The docking calculations and the significant number of interligand NOEs between DHA and EPA and the drugs warfarin and ibuprofen, which are stereotypical ligands for Sudlow's sites I and II, respectively, were interpreted in terms of competitive binding modes and the presence of two orientations of DHA and EPA at the binding sites FA7 and FA4. The exceptional flexibility of the long-chain DHA and EPA and the formation of strongly folded structural motives are the key properties of HSA-PUFA complexes.


Subject(s)
Eicosapentaenoic Acid , Serum Albumin, Human , Humans , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids , Molecular Docking Simulation , Binding Sites , Magnetic Resonance Spectroscopy , Fatty Acids, Unsaturated/metabolism
3.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138481

ABSTRACT

Saturation transfer difference (STD), inter-ligand NOEs (INPHARMA NMR), and docking calculations are reported for investigating specific binding sites of the high-affinity synthetic 7-nitrobenz-2-oxa-1,3-diazoyl-4-C12 fatty acid (NBD-C12 FA) with non-labeled human serum albumin (HSA) and in competition with the drugs warfarin and ibuprofen. A limited number of negative interligand NOEs between NBD-C12 FA and warfarin were interpreted in terms of a short-range allosteric competitive binding in the wide Sudlow's binding site II (FA7) of NBD-C12 FA with Ser-202, Lys-199, and Trp-214 and warfarin with Arg-218 and Arg-222. In contrast, the significant number of interligand NOEs between NBD-C12 FA and ibuprofen were interpreted in terms of a competitive binding mode in Sudlow's binding site I (FA3 and FA4) with Ser-342, Arg-348, Arg-485, Arg-410, and Tyr-411. NBD-C12 FA has the unique structural properties, compared to short-, medium-, and long-chain saturated and unsaturated natural free fatty acids, of interacting with well-defined structures with amino acids of both the internal and external polar anchor sites in Sudlow's binding site I and with amino acids in both FA3 and FA4 in Sudlow's binding site II. The NBD-C12 FA, therefore, interacts with novel structural characteristics in the drug binding sites I and II and can be regarded as a prototype molecule for drug development.


Subject(s)
Fatty Acids, Nonesterified , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Serum Albumin/chemistry , Ibuprofen , Protein Binding , Warfarin , Binding Sites , Fatty Acids/metabolism , Magnetic Resonance Spectroscopy , Amino Acids/metabolism
4.
Molecules ; 27(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36144648

ABSTRACT

Artemisinin is known to bind to the main plasma protein carrier serum albumin (SA); however, there are no atomic level structural data regarding its binding mode with serum albumin. Herein, we employed a combined strategy of saturation transfer difference (STD), transfer nuclear Overhauser effect spectroscopy (TR-NOESY), STD-total correlation spectroscopy (STD-TOCSY), and Interligand Noes for PHArmacophore Mapping (INPHARMA) NMR methods and molecular docking calculations to investigate the structural basis of the interaction of artemisinin with human and bovine serum albumin (HSA/BSA). A significant number of inter-ligand NOEs between artemisinin and the drugs warfarin and ibuprofen as well as docking calculations were interpreted in terms of competitive binding modes of artemisinin in the warfarin (FA7) and ibuprofen (FA4) binding sites. STD NMR experiments demonstrate that artemisinin is the main analyte for the interaction of the A. annua extract with BSA. The combined strategy of NMR and docking calculations of the present work could be of general interest in the identification of the molecular basis of the interactions of natural products with their receptors even within a complex crude extract.


Subject(s)
Artemisinins , Biological Products , Binding Sites , Complex Mixtures , Humans , Ibuprofen , Ligands , Magnetic Resonance Spectroscopy/methods , Molecular Docking Simulation , Protein Binding , Serum Albumin/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Human/metabolism , Warfarin
5.
Molecules ; 26(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200468

ABSTRACT

A DFT study of the 1H NMR chemical shifts, δ(1H), of geometric isomers of 18:3 conjugated linolenic acids (CLnAs), hexadecatrienyl pheromones, and model triene-containing compounds is presented, using standard functionals (B3LYP and PBE0) as well as corrections for dispersion interactions (B3LYP-D3, APFD, M06-2X and ωB97XD). The results are compared with literature experimental δ(1H) data in solution. The closely spaced "inside" olefinic protons are significantly more deshielded due to short-range through-space H…H steric interactions and appear close to or even beyond δ-values of aromatic systems. Several regularities of the computational δ(1H) of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest-energy DFT-optimized single conformer for all functionals used and are in very good agreement with experimental δ(1H) in solution. Examples are provided of literature studies in which experimental resonance assignments deviate significantly from DFT predictions and, thus, should be revised. We conclude that DFT calculations of 1H chemical shifts of trienyl compounds are powerful tools (i) for the accurate prediction of δ(1H) even with less demanding functionals and basis sets; (ii) for the unequivocal identification of geometric isomerism of conjugated trienyl systems that occur in nature; (iii) for tackling complex problems of experimental resonance assignments due to extensive signal overlap; and (iv) for structure elucidation in solution.

6.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796664

ABSTRACT

A density functional theory (DFT) study of the 1H- and 13C-NMR chemical shifts of the geometric isomers of 18:2 ω-7 conjugated linoleic acid (CLA) and nine model compounds is presented, using five functionals and two basis sets. The results are compared with available experimental data from solution high resolution nuclear magnetic resonance (NMR). The experimental 1H chemical shifts exhibit highly diagnostic resonances due to the olefinic protons of the conjugated double bonds. The "inside" olefinic protons of the conjugated double bonds are deshielded than those of the "outside" protons. Furthermore, in the cis/trans isomers, the signals of the cis bonds are more deshielded than those of the trans bonds. These regularities of the experimental 1H chemical shifts of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest energy DFT optimized single conformer, for all functionals and basis sets used. The other low energy conformers have negligible effects on the computational 1H-NMR chemical shifts. We conclude that proton NMR chemical shifts are more discriminating than carbon, and DFT calculations can provide a valuable tool for (i) the accurate prediction of 1H-NMR chemical shifts even with less demanding functionals and basis sets; (ii) the unequivocal identification of geometric isomerism of CLAs that occur in nature, and (iii) to derive high resolution structures in solution.


Subject(s)
Carbon Isotopes/analysis , Density Functional Theory , Linoleic Acids, Conjugated/chemistry , Magnetic Resonance Spectroscopy/methods , Protons , Stereoisomerism
7.
Antioxidants (Basel) ; 12(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37891880

ABSTRACT

Colocasia esculenta L. leaves are considered a by-product of taro cultivation and are discarded as environmental waste, despite their valuable phenolic composition. Their valorization to obtain value-added substances for medicinal, food, and cosmetic applications is the aim of the current work. An ultrasound-assisted extraction was developed for the environmentally friendly and sustainable isolation of taro leaf antioxidants using natural deep eutectic solvents (NaDESs). Among the utilized solvents, the NaDES based on betaine and ethylene glycol provided the best extraction efficiencies in terms of polyphenolic content and antioxidant activity. Multi-response optimization suggested a solvent-to-solid ratio of 10 mL g-1, a processing time of 60 min, an extraction temperature of 60 °C, and a water content of 33.8% (w/w) as optimal extraction parameters. Leaf extract obtained under these optimum operational parameters demonstrated a strong radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (65.80 ± 0.87%), a high ferric reducing antioxidant power (126.62 ± 1.92 µmol TE g-1 sample), and significant protection against oxidative stress-induced DNA damage. The chromatographic characterization of the optimum extract revealed its richness in flavonoids (flavones and flavonols). The outcomes of the present study suggest that the proposed method could serve as a highly efficient and green alternative for the recovery of polyphenols from agricultural wastes.

8.
FEBS J ; 289(18): 5617-5636, 2022 09.
Article in English | MEDLINE | ID: mdl-35380736

ABSTRACT

An approach based on the combined use of saturation transfer difference (STD), Tr-NOESY and Inter-ligand NOEs for PHArmacophore Mapping (INPHARMA) NMR techniques and docking calculations is reported, for the first time, for mapping interactions and specific binding sites of caproleic acid (10 : 1 cis-9), oleic acid (18 : 1 cis-9), linoleic acid (18 : 2 cis-9,12) and linolenic (18 : 3, cis-9,12,15) free fatty acids (FFAs) with non-labelled serum albumin (BSA/HSA). Significant negative inter-ligand NOEs between the FFAs and the drugs ibuprofen and warfarin, through competition experiments, were observed. The inter-ligand NOEs and docking calculations were interpreted in terms of competitive binding mode, the significant folding of the bis allylic region and the presence of two orientations of the FFAs in the warfarin binding site (FA7), due to two potential distinctive anchoring polar groups of amino acids. This conformational flexibility is the reason that, the location and conformational states of the FFAs in the binding site of warfarin could not be determined accurately, despite numerous available X-ray structural studies. α-Linolenic acid competes favourably with warfarin at the binding site FA7. Isothermal titration calorimetry experiments of the preformed HSA/α-linolenic acid complex upon titration with warfarin show a significant reduction in the binding constant of warfarin, in very good agreement with NMR and computational data. The combined use, therefore, of STD, Tr-NOESY and INPHARMA NMR, ITC and docking calculations may find promising applications in the field of protein-lipid recognition research.


Subject(s)
Ibuprofen , Serum Albumin , Amino Acids/metabolism , Binding Sites , Fatty Acids , Fatty Acids, Nonesterified , Fatty Acids, Unsaturated , Ligands , Linoleic Acids , Magnetic Resonance Spectroscopy , Oleic Acids , Protein Binding , Serum Albumin/chemistry , Warfarin/chemistry , alpha-Linolenic Acid
SELECTION OF CITATIONS
SEARCH DETAIL