Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucleic Acids Res ; 44(D1): D908-16, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26567549

ABSTRACT

Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy.


Subject(s)
Databases, Genetic , Evolution, Molecular , Pregnancy/genetics , Animals , Cats , Cattle , Dogs , Female , Gene Expression , Genomics , Guinea Pigs , Humans , Mice , Organ Specificity , Phenotype , Pregnancy/metabolism , Pregnancy Complications/genetics , Pregnancy Complications/metabolism , Rabbits , Rats , Reproduction/genetics
2.
Cell Rep ; 42(2): 112044, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36708513

ABSTRACT

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.


Subject(s)
COVID-19 , Coinfection , HIV Infections , HIV-1 , Hepatitis C , Humans , Hepacivirus , Antibodies, Neutralizing , SARS-CoV-2 , HIV Antibodies
3.
Front Immunol ; 13: 855772, 2022.
Article in English | MEDLINE | ID: mdl-35401559

ABSTRACT

Development of novel technologies for the discovery of human monoclonal antibodies has proven invaluable in the fight against infectious diseases. Among the diverse antibody repertoires elicited by infection or vaccination, often only rare antibodies targeting specific epitopes of interest are of potential therapeutic value. Current antibody discovery efforts are capable of identifying B cells specific for a given antigen; however, epitope specificity information is usually only obtained after subsequent monoclonal antibody production and characterization. Here we describe LIBRA-seq with epitope mapping, a next-generation sequencing technology that enables residue-level epitope determination for thousands of single B cells simultaneously. By utilizing an antigen panel of point mutants within the HIV-1 Env glycoprotein, we identified and confirmed antibodies targeting multiple sites of vulnerability on Env, including the CD4-binding site and the V3-glycan site. LIBRA-seq with epitope mapping is an efficient tool for high-throughput identification of antibodies against epitopes of interest on a given antigen target.


Subject(s)
HIV Antibodies , HIV-1 , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing , Antigens , Epitopes, B-Lymphocyte/genetics , HIV Antibodies/genetics , HIV-1/genetics , High-Throughput Nucleotide Sequencing , Humans
4.
Cell Rep Med ; 2(6): 100313, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34056628

ABSTRACT

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Immunoglobulin Fc Fragments/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Cross Reactions/immunology , Epitope Mapping , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Inbred BALB C , Phagocytosis , Protein Subunits/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
bioRxiv ; 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33398266

ABSTRACT

The continual emergence of novel coronavirus (CoV) strains, like SARS-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. Coronavirus spike (S) proteins share common structural motifs that could be vulnerable to cross-reactive antibody responses. To study this phenomenon in human coronavirus infection, we applied a high-throughput sequencing method called LIBRA-seq (Linking B cell receptor to antigen specificity through sequencing) to a SARS-CoV-1 convalescent donor sample. We identified and characterized a panel of six monoclonal antibodies that cross-reacted with S proteins from the highly pathogenic SARS-CoV-1 and SARS-CoV-2 and demonstrated a spectrum of reactivity against other coronaviruses. Epitope mapping revealed that these antibodies recognized multiple epitopes on SARS-CoV-2 S, including the receptor binding domain (RBD), N-terminal domain (NTD), and S2 subunit. Functional characterization demonstrated that the antibodies mediated a variety of Fc effector functions in vitro and mitigated pathological burden in vivo . The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies that may be useful for preventing potential future coronavirus outbreaks.

6.
Sci Rep ; 9(1): 10237, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308458

ABSTRACT

To characterize cell types, cellular functions and intracellular processes, an understanding of the differences between individual cells is required. Although microscopy approaches have made tremendous progress in imaging cells in different contexts, the analysis of these imaging data sets is a long-standing, unsolved problem. The few robust cell segmentation approaches that exist often rely on multiple cellular markers and complex time-consuming image analysis. Recently developed deep learning approaches can address some of these challenges, but they require tremendous amounts of data and well-curated reference data sets for algorithm training. We propose an alternative experimental and computational approach, called CellDissect, in which we first optimize specimen preparation and data acquisition prior to image processing to generate high quality images that are easier to analyze computationally. By focusing on fixed suspension and dissociated adherent cells, CellDissect relies only on widefield images to identify cell boundaries and nuclear staining to automatically segment cells in two dimensions and nuclei in three dimensions. This segmentation can be performed on a desktop computer or a computing cluster for higher throughput. We compare and evaluate the accuracy of different nuclear segmentation approaches against manual expert cell segmentation for different cell lines acquired with different imaging modalities.


Subject(s)
Computational Biology/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Algorithms , Biological Phenomena , Cell Nucleus , Microscopy/methods , Single-Cell Analysis/methods , Staining and Labeling , Suspensions
7.
Arch Neurol ; 69(1): 72-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22232345

ABSTRACT

OBJECTIVE: To evaluate whether the amyloid-binding agent carbon 11-labeled Pittsburgh Compound B ((11)C-PiB) could differentiate Alzheimer disease (AD) from human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) in middle-aged HIV-positive participants. DESIGN: (11)C-PiB scanning, clinical assessment, and cerebrospinal fluid (CSF) analysis were performed. Both χ(2) and t tests assessed differences in clinical and demographic variables between HIV-positive participants and community-living individuals observed at the Knight Alzheimer's Disease Research Center (ADRC). Analysis of variance assessed for regional differences in amyloid-ß protein 1-42 (Aß42) using (11)C-PiB. SETTING: An ADRC and HIV clinic. PARTICIPANTS: Sixteen HIV-positive participants (11 cognitively normal and 5 with HAND) and 19 ADRC participants (8 cognitively normal and 11 with symptomatic AD). MAIN OUTCOME MEASURES: Mean and regional (11)C-PiB binding potentials. RESULTS: Participants with symptomatic AD were older (P < .001), had lower CSF Aß42 levels (P < .001), and had higher CSF tau levels (P < .001) than other groups. Regardless of degree of impairment, HIV-positive participants did not have increased (11)C-PiB levels. Mean and regional binding potentials were elevated for symptomatic AD participants (P < .001). CONCLUSIONS: Middle-aged HIV-positive participants, even with HAND, do not exhibit increased (11)C-PiB levels, whereas symptomatic AD individuals have increased fibrillar Aß42 deposition in cortical and subcortical regions. Observed dissimilarities between HAND and AD may reflect differences in Aß42 metabolism. (11)C-PiB may provide a diagnostic biomarker for distinguishing symptomatic AD from HAND in middle-aged HIV-positive participants. Future cross-sectional and longitudinal studies are required to assess the utility of (11)C-PiB in older individuals with HAND.


Subject(s)
Benzothiazoles , Cognition Disorders/diagnostic imaging , Cognition Disorders/etiology , HIV Infections/complications , Adult , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Aniline Compounds , Apolipoproteins E/genetics , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cognition Disorders/cerebrospinal fluid , Cognition Disorders/genetics , Female , HIV Infections/cerebrospinal fluid , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL