Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cell ; 186(8): 1689-1707, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059069

ABSTRACT

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Subject(s)
Neoplasms , Neurosciences , Humans , Immune System , Neoplasms/pathology , Neurons/pathology , Tumor Microenvironment
2.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35914528

ABSTRACT

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Astrocytes/pathology , Brain/pathology , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplasm Invasiveness , Neurons/physiology
3.
Nature ; 613(7942): 179-186, 2023 01.
Article in English | MEDLINE | ID: mdl-36517594

ABSTRACT

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Mice , Brain/metabolism , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , NF-kappa B/metabolism , MAP Kinase Signaling System , Calcium Signaling , Cell Death , Survival Analysis , Calcium/metabolism
4.
Nature ; 573(7775): 532-538, 2019 09.
Article in English | MEDLINE | ID: mdl-31534219

ABSTRACT

A network of communicating tumour cells that is connected by tumour microtubes mediates the progression of incurable gliomas. Moreover, neuronal activity can foster malignant behaviour of glioma cells by non-synaptic paracrine and autocrine mechanisms. Here we report a direct communication channel between neurons and glioma cells in different disease models and human tumours: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells. These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumour microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype. Neuronal activity including epileptic conditions generates synchronised calcium transients in tumour-microtube-connected glioma networks. Glioma-cell-specific genetic perturbation of AMPA receptors reduces calcium-related invasiveness of tumour-microtube-positive tumour cells and glioma growth. Invasion and growth are also reduced by anaesthesia and the AMPA receptor antagonist perampanel, respectively. These findings reveal a biologically relevant direct synaptic communication between neurons and glioma cells with potential clinical implications.


Subject(s)
Brain Neoplasms/physiopathology , Disease Progression , Glioma/physiopathology , Synapses/pathology , Animals , Brain Neoplasms/ultrastructure , Disease Models, Animal , Glioma/ultrastructure , Humans , Mice , Microscopy, Electron, Transmission , Neurons/physiology , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
5.
J Neurosci ; 43(30): 5574-5587, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37429718

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Male , Female , Humans , Animals , Mice , Glioblastoma/diagnostic imaging , Diffusion Tensor Imaging , Microscopy , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology
6.
BMC Cancer ; 24(1): 135, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279087

ABSTRACT

BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/surgery , Quality of Life , Neoplasm Recurrence, Local/drug therapy , Seizures/drug therapy , Nitriles/therapeutic use , Pyridones/therapeutic use , Treatment Outcome , Double-Blind Method
7.
Nervenarzt ; 95(2): 96-103, 2024 Feb.
Article in German | MEDLINE | ID: mdl-38157044

ABSTRACT

Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain/pathology , Neurons
8.
Blood ; 137(9): 1219-1232, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33270819

ABSTRACT

Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.


Subject(s)
Blood Coagulation , Brain Neoplasms/blood , Breast Neoplasms/pathology , Melanoma/pathology , Neoplastic Cells, Circulating/pathology , Thrombosis/blood , Animals , Brain Neoplasms/etiology , Brain Neoplasms/pathology , Breast Neoplasms/blood , Breast Neoplasms/complications , Cell Cycle Checkpoints , Disease Models, Animal , Female , Humans , Melanoma/blood , Melanoma/complications , Mice , Thrombosis/etiology , Thrombosis/pathology , von Willebrand Factor/analysis
9.
PLoS Biol ; 17(12): e3000545, 2019 12.
Article in English | MEDLINE | ID: mdl-31846454

ABSTRACT

Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, ß-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , MAP Kinase Signaling System/physiology , Matrix Metalloproteinases/metabolism , Neurons/metabolism , Wnt Signaling Pathway/physiology , Animals , Animals, Genetically Modified , Brain Neoplasms/pathology , Cell Communication/physiology , Cell Line, Tumor , Disease Progression , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Frizzled Receptors/metabolism , Glioblastoma/pathology , Heterografts , Humans , Male , Microtubules/metabolism , Neurons/pathology , Wnt1 Protein/metabolism
10.
11.
Nervenarzt ; 93(10): 977-986, 2022 Oct.
Article in German | MEDLINE | ID: mdl-36129477

ABSTRACT

The nervous system integrates and processes information to act as master regulator of various vital, biological processes. However, increasing data suggest that the nervous system is also a key player in the initiation of cancer and cancer progression. Following the tenet that oncology follows ontogeny, it has been shown that brain tumors follow neural developmental processes. Incurable gliomas form neurite-like membrane tubes called tumor microtubes and are controlled by neurodevelopmental pathways. Tumor microtubes are used for invasion, proliferation and interconnection with other tumor cells, forming a tumor network that is therapeutically resistant. Additionally, neurons can activate tumor cells via glutamatergic synapses to drive tumor invasion and growth. The most recent knowledge of brain cancer neuroscience presented here with a focus on brain tumours has already led to new approaches for antitumour treatment.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Glioma/diagnosis , Glioma/therapy , Humans , Neurons
12.
Nature ; 528(7580): 93-8, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26536111

ABSTRACT

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.


Subject(s)
Astrocytoma/pathology , Brain Neoplasms/pathology , Gap Junctions/metabolism , Animals , Astrocytoma/metabolism , Astrocytoma/radiotherapy , Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Cell Communication/radiation effects , Cell Death/radiation effects , Cell Proliferation/radiation effects , Cell Surface Extensions/metabolism , Cell Surface Extensions/radiation effects , Cell Survival/radiation effects , Connexin 43/metabolism , Disease Progression , GAP-43 Protein/metabolism , Gap Junctions/radiation effects , Glioma/metabolism , Glioma/pathology , Glioma/radiotherapy , Humans , Male , Mice , Mice, Nude , Neoplasm Invasiveness , Radiation Tolerance/drug effects
14.
Nat Methods ; 13(4): 319-21, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928761

ABSTRACT

Super-resolution fluorescence microscopy has become a widely used tool in many areas of research. However, designing and validating super-resolution experiments to address a research question in a technically feasible and scientifically rigorous manner remains a fundamental challenge. We developed SuReSim, a software tool that simulates localization data of arbitrary three-dimensional structures represented by ground truth models, allowing users to systematically explore how changing experimental parameters can affect potential imaging outcomes.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Software , Synaptic Vesicles/ultrastructure , Algorithms , Computational Biology , Humans , Microscopy, Fluorescence/instrumentation
15.
Cancer Cell ; 42(6): 936-938, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38821062

ABSTRACT

Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.


Subject(s)
Breast Neoplasms , Neurons , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Neurons/metabolism , Neurons/immunology , Immune System/immunology , Animals
16.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320988

ABSTRACT

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioma/genetics , Brain Neoplasms/genetics , Chitinase-3-Like Protein 1
17.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571430

ABSTRACT

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Subject(s)
Neoplasms , Neurosciences , Humans , Central Nervous System , Forecasting , Proteomics
18.
Mol Pain ; 9: 48, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24067145

ABSTRACT

BACKGROUND: Cancer-associated pain is a major cause of poor quality of life in cancer patients and is frequently resistant to conventional therapy. Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. Moreover, these hematopoietic factors have been highly implicated in postsurgical pain, inflammatory pain and osteoarthritic pain. However, the molecular mechanisms via which G-/GMCSF bring about nociceptive sensitization and elicit pain are not known. RESULTS: In order to elucidate G-/GMCSF mediated transcriptional changes in the sensory neurons, we performed a comprehensive, genome-wide analysis of changes in the transcriptome of DRG neurons brought about by exposure to GMCSF or GCSF. We present complete information on regulated genes and validated profiling analyses and report novel regulatory networks and interaction maps revealed by detailed bioinformatics analyses. Amongst these, we validate calpain 2, matrix metalloproteinase 9 (MMP9) and a RhoGTPase Rac1 as well as Tumor necrosis factor alpha (TNFα) as transcriptional targets of G-/GMCSF and demonstrate the importance of MMP9 and Rac1 in GMCSF-induced nociceptor sensitization. CONCLUSION: With integrative approach of bioinformatics, in vivo pharmacology and behavioral analyses, our results not only indicate that transcriptional control by G-/GMCSF signaling regulates a variety of established pain modulators, but also uncover a large number of novel targets, paving the way for translational analyses in the context of pain disorders.


Subject(s)
Ganglia, Spinal/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Sensory Receptor Cells/drug effects , Animals , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects
19.
Trends Cancer ; 9(6): 457-458, 2023 06.
Article in English | MEDLINE | ID: mdl-37100731

ABSTRACT

Glioblastomas are incurable tumors often associated with epileptic seizures. In a recent study published in Neuron,Curry et al. demonstrated a novel function of the membrane protein IGSF3 that induces potassium dysregulation, neuronal hyperexcitability, and tumor progression. This work uncovers a novel layer of bidirectional neuron-tumor communication, further underlining the importance of comprehensively investigating neuron-tumor networks in glioblastoma.


Subject(s)
Glioblastoma , Glioma , Humans , Potassium , Glioma/genetics , Neurons , Membrane Proteins/genetics , Immunoglobulins/genetics
20.
JAMA Netw Open ; 6(12): e2346721, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38060223

ABSTRACT

Importance: Recent advancements in large language models (LLMs) have shown potential in a wide array of applications, including health care. While LLMs showed heterogeneous results across specialized medical board examinations, the performance of these models in neurology board examinations remains unexplored. Objective: To assess the performance of LLMs on neurology board-style examinations. Design, Setting, and Participants: This cross-sectional study was conducted between May 17 and May 31, 2023. The evaluation utilized a question bank approved by the American Board of Psychiatry and Neurology and was validated with a small question cohort by the European Board for Neurology. All questions were categorized into lower-order (recall, understanding) and higher-order (apply, analyze, synthesize) questions based on the Bloom taxonomy for learning and assessment. Performance by LLM ChatGPT versions 3.5 (LLM 1) and 4 (LLM 2) was assessed in relation to overall scores, question type, and topics, along with the confidence level and reproducibility of answers. Main Outcomes and Measures: Overall percentage scores of 2 LLMs. Results: LLM 2 significantly outperformed LLM 1 by correctly answering 1662 of 1956 questions (85.0%) vs 1306 questions (66.8%) for LLM 1. Notably, LLM 2's performance was greater than the mean human score of 73.8%, effectively achieving near-passing and passing grades in the neurology board examination. LLM 2 outperformed human users in behavioral, cognitive, and psychological-related questions and demonstrated superior performance to LLM 1 in 6 categories. Both LLMs performed better on lower-order than higher-order questions, with LLM 2 excelling in both lower-order and higher-order questions. Both models consistently used confident language, even when providing incorrect answers. Reproducible answers of both LLMs were associated with a higher percentage of correct answers than inconsistent answers. Conclusions and Relevance: Despite the absence of neurology-specific training, LLM 2 demonstrated commendable performance, whereas LLM 1 performed slightly below the human average. While higher-order cognitive tasks were more challenging for both models, LLM 2's results were equivalent to passing grades in specialized neurology examinations. These findings suggest that LLMs could have significant applications in clinical neurology and health care with further refinements.


Subject(s)
Language , Neurology , Humans , Cross-Sectional Studies , Reproducibility of Results , Neurologic Examination
SELECTION OF CITATIONS
SEARCH DETAIL